Communication Systems

Amplitude Modulation :

DSB-SC :

 $u(t) = A_C m(t) \cos 2\pi f_c t$

Power P = $\frac{A_C^2}{2} P_M$

Conventioanal AM :

 $\begin{array}{l} u\left(t\right)=A_{C}[1+m(t)]\ \text{Cos}\ 2\pi f_{c}t\,. \ \text{as long as } |m(t)|\leq 1 \ \text{demodulation is simple}\,. \\ \text{Practically } m(t)=a\ m_{n}(t)\,. \\ \text{Modulation index } a=\frac{m(t)}{m_{n}(t)} \ , \ m_{n}(t)=\frac{m(t)}{\max|m(t)|} \end{array}$

Power = $\frac{A_C^2}{2} + \frac{A_C^2 a^2}{4}$

SSB-AM : \rightarrow Square law Detector SNR = $\frac{2}{K_{a} m(t)}$

Square law modulator \downarrow $K_a = 2a_2/a_1 \rightarrow \text{amplitude Sensitivity}$

Envelope Detector $\mbox{ R}_s\mbox{C}\xspace(i/p) < < 1 \, / \, f_c$

$$R_1C(o/P) >> 1/f_c$$
 $R_1C << 1/\alpha$

 $\frac{1}{R_l C} \ge \frac{\omega_{m \, \mu}}{\sqrt{1 - \mu^2}}$

Frequency & Phase Modulation : Angle Modulation :-

$$\begin{aligned} & u(t) = A_{C} \cos \left(2\pi f_{c}t + \emptyset(t)\right) \\ & \emptyset(t) \begin{cases} K_{p} m(t) \to PM \\ 2\pi K_{f} \int_{-\infty}^{t} m(t) . dt \to FM \end{cases} \\ & K_{p} \& K_{f} \text{ phase \& frequency deviation constant} \end{aligned}$$

→ max phase deviation $\Delta \emptyset = K_p \max |m(t)|$ → max frequency deviation $\Delta f = K_f \max |m(t)|$

Bandwidth : Effective Bandwidth $B_C = 2 (\beta + 1) f_m \rightarrow 98\%$ power

Noise in Analog Modulation :-

 $\rightarrow (\text{SNR})_{\text{Base Band}} = \left(\frac{\text{S}}{\text{N}}\right)_0 = \frac{\text{P}_{\text{m}}}{\text{P}_{\text{n}}} = \frac{\text{P}_{\text{R}}}{\text{N}_0\text{B}} \\ \text{R} = \text{m}(\text{t})\cos 2\pi\text{f}_{\text{c}} \qquad \therefore \text{P}_{\text{R}} = \text{P}_{\text{m}} / 2$

No.1 Training center for **GATE/IES/JTO/PSUs** in Bangalore @ **Malleshwaram & Jayanagar**, Bangalore. Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : <u>onlineies.com@gmail.com</u> Site: <u>www.onlineIES.com</u> Google+: <u>http://bit.ly/gplus_iesgate</u> FB: <u>www.facebook.com/onlineies</u>

1

$$\rightarrow (\text{SNR})_{\text{DSB-SC}} = \frac{P_{\text{m}}/4}{P_{\text{nI}/4}} = \frac{P_{\text{m}}}{2N_0B} = \frac{2 P_{\text{R}}}{2N_0B} = \frac{P_{\text{R}}}{N_0R} = \left(\frac{S}{N}\right)_0 = (\text{SNR})_{\text{Base band}}$$

 $\rightarrow (\text{SNR})_{\text{SSB-SC}} = \frac{P_{\text{m}}/4}{P_{\text{ni}/4}} = \frac{P_{\text{m}}}{N_0 B} = \frac{P_{\text{R}}}{N_0 B} = \left(\frac{S}{N}\right)_0 = (\text{SNR})_{\text{Base band}}.$

$$\left(\frac{s}{N}\right)_{com AM} = \frac{\mu^2 P_m}{1 + \mu^2 P_m} \cdot \frac{P_R}{N_0 B} = \eta \left(\frac{s}{N}\right)_{Base Band} \qquad \eta = \frac{\mu^2 P_m}{1 + \mu^2 P_m}$$

Noise in Angle Modulation :-

$$\left(\frac{s}{N}\right)_{\mathbf{0}} = \begin{cases} \beta_p^2 P_{M_n} \left(\frac{s}{N}\right)_{\mathbf{b}}, PM \\ 3 \beta_f^2 P_{M_n} \left(\frac{s}{N}\right)_{\mathbf{b}}, FM \end{cases}$$

PCM :-

 \rightarrow Min. no of samples required for reconstruction = $2\omega = f_s$; $\omega =$ Bandwidth of msg signal.

- \rightarrow Total bits required = $v f_s$ bps . $v \rightarrow$ bits / sample
- \rightarrow Bandwidth = R_b/2 = v f_s/2 = v . ω
- \rightarrow SNR = 1.76 + 6.02 v

 \rightarrow As Number of bits increased SNR increased by 6 dB/bit . Band width also increases.

Delta Modulation :-

- \rightarrow By increasing step size slope over load distortion eliminated [Signal raised sharply]
- \rightarrow By Reducing step size Grannualar distortion eliminated . [Signal varies slowly]

Digital Communication

Matched filter:

 \rightarrow impulse response $a(t) = P^* (T - t) \cdot P(t) \rightarrow i/p$

 \rightarrow Matched filter o/p will be max at multiples of 'T'. So, sampling @ multiples of 'T' will give max SNR (2nd point)

 \rightarrow matched filter is always causal a(t) = 0 for t < 0

 \rightarrow Spectrum of o/p signal of matched filter with the matched signal as i/p ie, except for a delay factor ; proportional to energy spectral density of i/p.

$$\emptyset_0(\mathbf{f}) = \mathbf{H}_{opt}(\mathbf{f}) \ \emptyset(\mathbf{f}) = \emptyset(\mathbf{f}) \ \emptyset^*(\mathbf{f}) \ e^{-2\pi \mathbf{f} \mathbf{T}}$$

 $\phi_0(f) = |\phi(f)|^2 e^{-j2\pi fT}$

 \rightarrow o/p signal of matched filter is proportional to shifted version of auto correlation fine of i/p signal

Cauchy-Schwartz in equality :-

 $\begin{array}{l} \int_{-\infty}^{\infty} |g_1^*(t) \ g_2(t) \ dt|^2 \ \leq \ \int_{-\infty}^{\infty} g_1^2(t) \ dt \ \ \int_{-\infty}^{\infty} |g_2(t)|^2 \ dt \\ \text{If} \ g_1(t) = c \ g_2(t) \ \text{then equality holds otherwise} \ \ `<' \ \text{holds} \end{array}$

Raised Cosine pulses :

$$P(t) = \frac{\sin(\frac{\pi t}{T})}{(\frac{\pi t}{T})} \cdot \frac{\cos(\frac{\pi \alpha t}{T})}{1 - 4\alpha^2 t T^2}$$
$$P(f) = \begin{cases} T, & |f| \le \frac{1 - \alpha}{2T} \\ T \cos^2\left(\frac{\pi t}{2\alpha} \left(|f| - \frac{1 - \alpha}{2T}\right)\right); \frac{1 - \alpha}{2T} \le |f| \le \frac{1 + \alpha}{2T} \\ 0, & |f| > \frac{1 + \alpha}{2T} \end{cases}$$

• Bamdwidth of Raised cosine filter $f_B = \frac{1+\alpha}{2T} \Rightarrow Bit rate \frac{1}{T} = \frac{2f_B}{1+\alpha}$ $\alpha \rightarrow roll of factor$ $T \rightarrow signal time period$

→ For Binary PSK
$$P_e = Q\left(\frac{d}{2\sigma}\right) = Q\left(\sqrt{\frac{2\varepsilon_s}{N_0}}\right) = \frac{1}{2}\operatorname{erfc}\left(\sqrt{\frac{\varepsilon_s}{N_0}}\right)$$

→ 4 PSK $P_e = 2Q\left(\sqrt{\frac{2\varepsilon_b}{N_0}}\right)\left[1 - \frac{1}{2}Q\left(\sqrt{\frac{2\varepsilon_b}{N_0}}\right)\right]$

FSK:-For BPSK

$$P_{e} = Q\left(\frac{d}{2\sigma}\right) = Q\left(\sqrt{\frac{\varepsilon_{s}}{N_{0}}}\right) = \frac{1}{2}\operatorname{erfc}\left(\sqrt{\frac{\varepsilon_{s}}{2N_{0}}}\right)$$

 \rightarrow All signals have same energy (Const energy modulation)

 \rightarrow Energy & min distance both can be kept constant while increasing no. of points . But Bandwidth Compramised.

- \rightarrow PPM is called as Dual of FSK .
- \rightarrow For DPSK $P_e = \frac{1}{2} e^{-\epsilon_b/N_0}$
- 3 No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar, Bangalore. Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : <u>onlineies.com@gmail.com</u> Site: <u>www.onlineIES.com</u> Google+: <u>http://bit.ly/gplus_iesgate</u> FB: <u>www.facebook.com/onlineies</u>

Institute Of Engineering Studies (IES, Bangalore) Formulae Sheet in ECE/TCE Department

 \rightarrow Orthogonal signals require factor of '2' more energy to achieve same P_e as anti podal signals

 \rightarrow Orthogonal signals are 3 dB poorer than antipodal signals. The 3dB difference is due to distance b/w 2 points.

- \rightarrow For non coherent FSK $P_e = \frac{1}{2} e^{-\varepsilon_b/N_0}$
- \rightarrow FPSK & 4 QAM both have comparable performance .
- \rightarrow 32 QAM has 7 dB advantage over 32 PSK.
- Bandwidth of Mary PSK $=\frac{2}{T_s} = \frac{2}{T_{blog_2^m}}$; $S = \frac{\log_2^m}{2}$
- Bandwidth of Mary FSK = $\frac{M}{2T_s} = \frac{M}{2T_b \log_2^m}$; S = $\frac{\log_2^m}{m}$
- Bandwidth efficiency $S = \frac{R_b}{B.W}$.
- Symbol time $T_s = T_b \log_2^m$
- Band rate $=\frac{\text{Bit rate}}{\log_2^m}$

Signals & Systems

$$\rightarrow \text{ Energy of a signal } \int_{-\infty}^{\infty} |x(t)|^2 \text{ dt} = \sum_{n=-\infty}^{\infty} |x[n]|^2 }$$

$$\rightarrow \text{ Power of a signal P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 \text{ dt} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2 }$$

$$\rightarrow x_1(t) \rightarrow P_1; x_2(t) \rightarrow P_2 \\ x_1(t) + x_2(t) \rightarrow P_1 + P_2 \text{ iff } x_1(t) & x_2(t) \text{ orthogonal} }$$

$$\rightarrow \text{ Shifting & \text{Time scaling won't effect power . Frequency content doesn't effect power }$$

$$\rightarrow \text{ if power = ω → neither energy nor power signal Power = ω → energy signal Power signal Power = ω → energy signal Power = ω → power signal Aperiodic & deterministic → Energy signal = ω . Power signals Precedence rule for scaling & Shifting :
$$x(at + b) \rightarrow (1) \text{ shift } x(t) by 'b' \rightarrow x(t + b) \\ (2) \text{ Scale } x(t + b) by 'a' \rightarrow x(a + b) \\ x(a (t + b/a)) \rightarrow (1) \text{ scale } x(t) by a \rightarrow x(at) \\ (2) \text{ shift } x(at) by b'a \rightarrow x(a (t+b)a). \\ \rightarrow x(at + b) = y(t) \Rightarrow x(t) = y\left(\frac{t-b}{a}\right)$$

$$+ x(at + b) = y(t) \Rightarrow x(t) = y\left(\frac{t-b}{a}\right)$$

$$+ x(at + b) = y(t) \Rightarrow x(t) = y\left(\frac{t-b}{a}\right)$$

$$+ x(at + b) = y(t) \Rightarrow x(t) = y\left(\frac{t-b}{a}\right)$$

$$+ x(at + b) = y(t) \Rightarrow x(t) = 2T \text{ trift}/T$$

$$+ \frac{1}{b-\alpha} \text{ Rect } (t/2T)^{\alpha} \text{ A}_2 \text{ Rect} (t/2T_2) = 2A_1A_2 \min (T_1, T_2) \text{ trapezoid } (T_1, T_2)$$

$$+ \text{ Rect } (t/2T)^{\alpha} \text{ A}_2 \text{ Rect} (t/2T_2) = 2T \text{ trift}/T)$$

$$+ \frac{1}{Bibert Transform Pairs :} \int_{-\infty}^{\infty} e^{-x^2/2\sigma^2} dx = \sigma^3 \sqrt{2\pi} \ \sigma > 0$$

$$+ \frac{1}{2aplace Transform :}$$

$$+ \frac{5}{2} \text{ No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwarram & $x Jayanagar, Bangalore. Phi: 0 99003 99699(9 9 749 70 9225) / 080-32552008$$$$

Email : <u>onlineies.com@gmail.com</u> Site: <u>www.onlineIES.com</u> Google+: <u>http://bit.ly/gplus_iesgate</u> FB: <u>www.facebook.com/onlineies</u>

$$x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s) e^{st} ds$$
$$X(s) = \int_{-\infty}^{\infty} x(t) e^{-st} ds$$

Initial & Final value Theorems :

x(t) = 0 for t < 0; x(t) doesn't contain any impulses /higher order singularities @ t = 0 then

$$\mathbf{x}(0^+) = \lim_{s \to \infty} s \, X(s)$$

 $x(\infty) = \lim_{s \to 0} s X(s)$

Properties of ROC :-

1. X(s) ROC has strips parallel to $j\omega$ axis

- 2. For rational laplace transform ROC has no poles
- 3. $x(t) \rightarrow$ finite duration & absolutely integrable then ROC entire s-plane
- 4. $x(t) \rightarrow$ Right sided then ROC right side of right most pole excluding pole $s = \infty$
- 5. $x(t) \rightarrow$ left sided ROC left side of left most pole excluding $s = -\infty$
- 6. $x(t) \rightarrow two sided$ ROC is a strip
- 7. if x(t) causal ROC is right side of right most pole including $s = \infty$
- 8. if x(t) stable ROC includes j ω -axis

Z-transform :-

$$x[n] = \frac{1}{2\pi j} \oint x(z) z^{n-1} dz$$
$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$

Initial Value theorem : If x[n] = 0 for n < 0 then $x[0] = \lim_{z \to \infty} X(z)$

Final Value theorem :- $\lim_{z\to\infty} x[n] = \lim_{z\to 1} (z-1) X(z)$

Properties of ROC :-

- 1.ROC is a ring or disc centered @ origin2. DTFT of x[n] converter if and only if ROC includes unit circle
- 3. ROC cannot contain any poles

- 4. if x[n] is of finite duration then ROC is enter Z-plane except possibly 0 or ∞
- 5. if x[n] right sided then ROC \rightarrow outside of outermost pole excluding z = 0
- 6. if x[n] left sided then ROC \rightarrow inside of innermost pole including z =0
- 7. if x[n] & sided then ROC is ring
- 8. ROC must be connected region
- 9.For causal LTI system ROC is outside of outer most pole including ∞
- 10.For Anti Causal system ROC is inside of inner most pole including '0'
- 11. System said to be stable if ROC includes unit circle.
- 12. Stable & Causal if all poles inside unit circle
- 13. Stable & Anti causal if all poles outside unit circle.

Phase Delay & Group Delay :-

When a modulated signal is fixed through a communication channel, there are two different delays to be considered.

channel

(i) Phase delay:

Signal fixed @ o/p lags the fixed signal by $\phi(\omega_c)$ phase

$$\tau_{\rm P} = -\frac{\emptyset(\omega_{\rm c})}{\omega_{\rm c}} \text{ where } \emptyset(\omega_{\rm c}) = \text{ K H}(j\omega)$$
Frequency response of
$$\int_{0}^{0} \psi(\omega) d\omega = 0$$

Group delay $\tau_g = -\frac{d\phi(\omega)}{d\omega}\Big|_{\omega = \omega_c}$ for narrow Band signal \downarrow Signal delay / Envelope delay

Probability & Random Process:-

 $\rightarrow P(A/B) = \frac{P(A \cap B)}{P(B)}$

- \rightarrow Two events A & B said to be mutually exclusive /Disjoint if P(A \cap B) =0
- \rightarrow Two events A & B said to be independent if P (A/B) = P(A) \Rightarrow P(A \cap B) = P(A) P(B)

$$\rightarrow P(Ai / B) = \frac{P(Ai \cap B)}{P(B)} = \frac{P(\frac{B}{Ai})P(Ai)}{\sum_{i=1}^{n} P(\frac{B}{Ai})P(Ai)}$$

CDF:-Cumulative Distribution function $F_{x}(x) = P \{ X \le x \}$

Properties of CDF:

- $F_x(\infty) = P \{ X \le \infty \} = 1$
- $F_x(-\infty) = 0$
- $F_x (x_1 \le X \le x_2) = F_x (x_2) F_x (x_1)$
- Its Non decreasing function
- $P\{X > x\} = 1 P\{X \le x\} = 1 F_x(x)$

PDF :-

$$Pdf = f_x(x) = \frac{d}{dx} F_x(x)$$

$$Pmf = f_x(x) = \sum_{i=-\infty}^{\infty} P\{X = x_i\} \ \delta(x = x_i)$$

Properties:-

• $f_x(x) \ge 0$

•
$$F_x(x) = f_x(x) * u(x) = \int_{-\infty}^x f_x(x) dx$$

• $F_x(\infty) = \int_{-\infty}^{\infty} f_x(x) dx = 1$ so, area under PDF = 1

• P {
$$x_1 < X \le x_2$$
 } = $\int_{x_1}^{x_2} f_x(x) dx$

Mean & Variance :-

Mean
$$\mu_x = E \{x\} = \int_{-\infty}^{\infty} x f_x(x) dx$$

Variance $\sigma^2 = E \{ (X - \mu_x)^2 \} = E \{x^2\} - \mu_x^2$
 $\rightarrow E\{g(x)\} = \int_{-\infty}^{\infty} g(x) f_x(x) dx$

Uniform Random Variables :

Random variable $X \sim u(a, b)$ if its pdf of form as shown below

$$f_{x}(x) = \begin{cases} \frac{1}{b-a} ; a < x \le b \\ 0, else \end{cases}$$
$$F_{x}(x) = \begin{cases} \frac{1}{b-a} ; a < x \le b \\ \frac{x-a}{b-a} ; a < x \le b \\ 0; else \end{cases}$$

Mean = $\frac{a+b}{2}$

Variance = $(b - a)^2 / 12$ E{ x² } = $\frac{a^2 + ab + b^2}{3}$

Gaussian Random Variable :-

$$\begin{split} f_{x}(x) &= \frac{1}{\sqrt{2\pi\sigma^{2}}} \ e^{-(x-\mu)^{2}/2\sigma^{2}} \\ X &\sim N \ (\mu_{1}\sigma^{2}) \end{split}$$

Mean = $\int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2} dx = \mu$

Variance = $\frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} x^2 e^{-(x-\mu)^2/2\sigma^2} dx = \sigma^2$

Exponential Distribution :-

$$f_x(x) = \lambda e^{-\lambda x} u(x)$$

 $F_{x}(x) = (1 - e^{-\lambda x}) u(x)$

Laplacian Distribution : $f_x(x) = \frac{\lambda}{2} e^{-\lambda |x|}$

Multiple Random Variables :-

- $\bullet \quad F_{XY} \left(x \; , \; y \right) = P \; \left\{ \; X \leq x \; , \; Y \leq y \; \right\}$
- $F_{XY}(x, \infty) = P \{ X \le x \} = F_x(x); F_{xy}(\infty, y) = P \{ Y < y \} = F_Y(y)$
- $F_{xy}(-\infty, y) = F_{xy}(x, -\infty) = F_{xy}(-\infty, -\infty) = 0$
- $f_x(x) = \int_{-\infty}^{\infty} f_{xy}(x, y) \, dy$; $f_Y(y) = \int_{-\infty}^{\infty} f_{xy}(x, y) \, dx$

•
$$F_{Y/X}\left(\frac{Y}{X} \le x\right) = \frac{P\{Y \le y, X \le x\}}{P\{X \le x\}} = \frac{F_{XY}(x,y)}{F_X(x)}$$

•
$$f_{Y/X}(y/x) = \frac{f_{xy}(x,y)}{f_x(x)}$$

Independence :-

• X & Y are said to be independent if $F_{XY}(x, y) = F_X(x) F_Y(y)$ $\Rightarrow f_{XY}(x, y) = f_X(x) \cdot f_X(y)$ P { X $\leq x, Y \leq y$ } = P { X $\leq x$ } . P{Y $\leq y$ }

Correlation:

Corr{ XY} = E {XY} = $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{xy}(x, y)$. xy. dx dy If E { XY} = 0 then X & Y are orthogonal.

Uncorrelated :-Covariance = Cov {XY} = E { (X - μ_x) (Y- μ_y } = E {xy} - E {x} E{y}. If covariance = 0 \Rightarrow E{xy} = E{x} E{y}

• Independence \rightarrow uncorrelated but converse is not true.

Random Process:-

Take 2 random process X(t) & Y(t) and sampled @ t_1, t_2

 $X(t_1)$, $X(t_2)$, $Y(t_1)$, $Y(t_2) \rightarrow$ random variables

 \rightarrow Auto correlation $R_x(t_1, t_2) = E \{X(t_1) | X(t_2) \}$

No.1 Training center for **GATE/IES/JTO/PSUs** in Bangalore @ **Malleshwaram &** Jayanagar, Bangalore. Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : <u>onlineies.com@gmail.com</u> Site: <u>www.onlineIES.com</u> Google+: <u>http://bit.ly/gplus_iesgate</u> FB: <u>www.facebook.com/onlineies</u>

9

- $\rightarrow Auto \ covariance \ C_x(t_1, t_2) = E \ \{ \ X(t_1) \mu_x(t_1)) \ (X(t_2) \mu_x(t_2) \ \} = R_x(t_1, t_2) \mu_x(t_1) \ \mu_x(t_2)$
- \rightarrow cross correlation $R_{xy}(t_1, t_2) = E \{ X(t_1) Y(t_2) \}$
- $\rightarrow \text{cross covariance } C_{xy}(t_1, t_2) = E\{ X(t_1) \mu_x(t_1)) (Y(t_2) \mu_y(t_2) \} = R_{xy}(t_1, t_2) \mu_x(t_1) \mu_y(t_2)$
- $\rightarrow C_{XY}(t_1, t_2) = 0 \Rightarrow R_{xy}(t_1, t_2) = \mu_x(t_1) \mu_y(t_2) \rightarrow Un \text{ correlated}$
- \rightarrow R_{XY} (t₁, t₂) = 0 \Rightarrow Orthogonal cross correlation = 0
- \rightarrow F_{XY} (x, y ! t₁, t₂) = F_x (x! t₁) F_y(y ! t₂) \rightarrow independent

Properties of Auto correlation :-

- $R_x(0) = E \{ x^2 \}$
- $R_x(\tau) = R_x(-\tau) \rightarrow even$
- $|\mathbf{R}_{\mathbf{x}}(\tau)| \leq \mathbf{R}_{\mathbf{x}}(0)$

Cross Correlation

- $R_{xy}(\tau) = R_{yx}(-\tau)$
- $R_{xy}^2(\tau) \le R_x(0) \cdot R_y(0)$
- $2 |R_{xy}(\tau)| \le R_x(0) + R_y(0)$

Power spectral Density :-

• P.S.D
$$S_x(j\omega) = \int_{-\infty}^{\infty} R_x(\tau) e^{-j\omega\tau} d\tau$$

 $R_{x}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{x}(j\omega) e^{j\omega\tau} d\omega$

- $S_y(j\omega) = S_x(j\omega) |H(j\omega)|^2$
- Power = $R_x(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_x(j\omega) d\omega$
- $R_x(\tau) = k \,\delta(\tau) \rightarrow \text{white process}$

Properties :

- $S_x(j\omega)$ even
- $S_x(j\omega) \ge 0$

Control Systems

S

Time Response of 2nd order system :-

Step i/P :

•
$$C(t) = 1 - \frac{e^{-\zeta \omega_n t}}{\sqrt{1-\zeta^2}} \left(\sin \omega_n \sqrt{1-\zeta^2} t \pm \tan^{-1} \left(\frac{\sqrt{1-\zeta^2}}{\zeta} t + \frac{1}{\zeta} t + \frac{1}{\zeta} t \right) \right)$$

•
$$e(t) = \frac{e^{-\zeta \omega_n t}}{\sqrt{1-\zeta^2}} \left(\sin \omega_d t \pm \tan^{-1} \left(\frac{\sqrt{1-\zeta^2}}{\zeta} \right) \right)$$

•
$$e_{ss} = \lim_{t \to \infty} \frac{e^{-\zeta \omega_n t}}{\sqrt{1-\zeta^2}} \left(\sin \omega_d t \pm \tan^{-1} \left(\frac{\sqrt{1-\zeta^2}}{\zeta} \right) \right)$$

 $\rightarrow \zeta \rightarrow$ Damping ratio ; $\zeta \omega_n \rightarrow$ Damping factor

$$\zeta < 1$$
(Under damped) :-

$$C(t) = 1 - \frac{e^{-\zeta \omega_{n} t}}{\sqrt{1-\zeta^{2}}} \sin\left(\omega_{d} t \pm \tan^{-1}\left(\frac{\sqrt{1-\zeta^{2}}}{\zeta}\right)\right)$$

$$\zeta = 0 \text{ (un damped) :-}$$

$$c(t) = 1 - \cos \omega_{n} t$$

$$\zeta = 1 \text{ (Critically damped) :-}$$

$$C(t) = 1 - e^{-\omega_{n} t} (1 + \omega_{n} t)$$

 $\zeta > 1$ (over damped) :-

$$C(t) = 1 - \frac{e^{-\left(\zeta - \sqrt{\zeta^2 - 1}\right)\omega_n t}}{2\sqrt{\zeta^2 - 1}\left(\zeta - \sqrt{\zeta^2 - 1}\right)}$$

 $T = \frac{1}{\left(\zeta - \sqrt{\zeta^2 - 1}\right)\omega_n}$

 $T_{undamped} > T_{overdamped} > T_{underdamped} > T_{criticaldamp}$

Time Domain Specifications :-

• Rise time
$$t_r = \frac{\pi - \emptyset}{\omega_n \sqrt{1 - \zeta^2}}$$
 $\emptyset = \tan^{-1} \left(\frac{\sqrt{1 - \zeta^2}}{\zeta} \right)$
• Peak time $t_p = \frac{n\pi}{\omega_d}$
• Max over shoot % $M_p = e^{-\zeta \omega_n / \sqrt{1 - \zeta^2}} \times 100$
• Settling time $t_s = 3T$ 5% tolerance
 $= 4T$ 2% tolerance
 $= 4T$ 2% tolerance
• Delay time $t_d = \frac{1 + 0.7\zeta}{\omega_n}$
• Damping factor² $\zeta^2 = \frac{(\ln M_p)^2}{\pi^2 + (\ln M_p)^2}$
• Time period of oscillations $T = \frac{2\pi}{\omega_d}$
• No of oscillations $= \frac{t_s}{2\pi/\omega_d} = \frac{t_s \times \omega_d}{2\pi}$
• $t_r \approx 1.5 t_d$ $t_r = 2.2 T$
• Resonant peak $M_r = \frac{1}{2\zeta\sqrt{1-\zeta^2}}$; $\omega_r = \omega_n \sqrt{1 - 2\zeta^2}$ $\frac{\omega_n > \omega_r}{\omega_b > \omega_n}] \omega_r < \omega_n < \omega_b$

Static error coefficients :-

• Step i/p:
$$e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} s E(s) = \lim_{s \to 0} \frac{SR(s)}{1+GH}$$

$$e_{ss} = \frac{1}{1+K_p}$$
 (positional error) $K_p = \lim_{s \to 0} G(s) H(s)$

• Ramp i/p (t):
$$e_{ss} = \frac{1}{K_v}$$
 $K_v = \lim_{s \to 0} SG(s)H(s)$

• Parabolic i/p (t²/2):
$$e_{ss} = 1/K_a$$
 $K_a = \lim_{s \to 0} s^2 G(s)H(s)$

 $\begin{array}{ll} Type \ < i/p \ \rightarrow e_{ss} = \infty \\ Type \ = \ i/p \ \rightarrow e_{ss} \ finite \\ Type \ > i/p \ \rightarrow e_{ss} = 0 \end{array}$

- Sensitivity $S = \frac{\partial A/A}{\partial K/K}$ sensitivity of A w.r.to K.
- Sensitivity of over all T/F w.r.t forward path T/F G(s) :
- 12 No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar, Bangalore. Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : <u>onlineies.com@gmail.com</u> Site: <u>www.onlineIES.com</u> Google+: <u>http://bit.ly/gplus_iesgate</u> FB: <u>www.facebook.com/onlineies</u>

<u>Open loop:</u> S = 1

<u>Closed loop</u>: $S = \frac{1}{1+G(s)H(s)}$

- Minimum 'S' value preferable
- Sensitivity of over all T/F w.r.t feedback T/F H(s): $S = \frac{G(s)H(s)}{1+G(s)H(s)}$

Stability RH Criterion :-

- Take characteristic equation 1 + G(s) H(s) = 0
- All coefficients should have same sign
- There should not be missing 's' term . Term missed means presence of at least one +ve real part root
- If char. Equation contains either only odd/even terms indicates roots have no real part & posses only imag parts there fore sustained oscillations in response.
- Row of all zeroes occur if
 - (a) Equation has at least one pair of real roots with equal image but opposite sign
 - (b) has one or more pair of imaginary roots
 - (c) has pair of complex conjugate roots forming symmetry about origin.

Electromagnetic Fields

Vector Calculus:-

- \rightarrow A. (B × C) = C. (A × B) = B. (C × A)
- $\rightarrow A \times (B \times C) = B(A.C) C(A.B) \rightarrow Bac Cab rule$
- \rightarrow Scalar component of A along B is $A_B = A \cos \theta_{AB} = A \cdot a_B = \frac{(A \cdot B)}{|B|}$
- → Vector component of A along B is $\overline{A}_B = A \cos \theta_{AB}$. $a_B = \frac{(A.B) B}{|B|^2}$

Laplacian of scalars :-

- $\oint A. ds = v^{\int (\nabla A) dv} \rightarrow \text{Divergence theorem}$
- $L^{\oint A.dI} = s^{\int (\nabla \times A)ds} \rightarrow \text{Stokes theorem}$
- $\nabla^2 A = \nabla (\nabla . A) \nabla \times \nabla \times A$
- $\nabla .A = 0 \rightarrow \text{solenoidal} / \text{Divergence loss}$; $\nabla .A > 0 \rightarrow \text{source}$; $\nabla .A < 0 \Rightarrow \text{sink}$
- $\nabla \times A = 0 \rightarrow$ irrotational / conservative/potential.
- $\nabla^2 A = 0 \rightarrow \text{Harmonic}$.

Electrostatics :-

- Force on charge 'Q' located @ r $F = \frac{Q}{4\pi\epsilon_0} \sum_{k=1}^{N} \frac{Q_k(r-r_k)}{|r-r_k|^3}$; $F_{12} = \frac{Q_1Q_2}{4\pi\epsilon_0R^3}$. \overline{R}_{12}
- E @ point 'r' due to charge located @ r' s $\overline{E} = \frac{1}{4\pi\epsilon_0} \sum_{K=1}^{N} \frac{(r-r_k)}{|r-r_k|^3} Q_k$
- E due to ∞ line charge @ distance ' ρ ' $E = \frac{\rho_L}{2\pi\epsilon_0 \rho}$. a_{ρ} (depends on distance)
- E due to surface charge ρ_s is $E = \frac{\rho_s}{2\epsilon_0} a_n$. $a_n \rightarrow unit$ normal to surface (independent of distance)
- For parallel plate capacitor @ point 'P' b/w 2 plates of 2 opposite charges is

$$\mathbf{E} = \frac{\rho_{s}}{2\varepsilon_{0}} \mathbf{a}_{n} - \left(\frac{\rho_{s}}{2\varepsilon_{0}}\right) (-a_{n})$$

'E' due to volume charge $E = \frac{Q}{4\pi\epsilon_0 R^2} a_r$. Flectric flux density $D = \epsilon_0 E$ $D \rightarrow$ independent of medium \rightarrow Electric flux density $D = \varepsilon_0 E$ Flux $\Psi = s^{\int D \cdot ds}$

Gauss Law :-

 \rightarrow Total flux coming out of any closed surface is equal to total charge enclosed by surface . $\Psi = Q_{enclosed} \Rightarrow \int D \cdot ds = Q_{enclosed} = \int \rho_v \cdot dv$ $\rho_v = \nabla D$

 \rightarrow Electric potential $V_{AB} = \frac{w}{\Omega} = -\int_{A}^{B} E. dI$ (independent of path) $V_{AB} = -\int_{A}^{B} \frac{Q}{4\pi\epsilon_{o}r^{2}} a_{r}$. dr $a_{r} = V_{B} - V_{A}$ (for point charge)

• Potential @ any point (distance = r), where Q is located same where , whose position is vector @ r'

$$4\pi\epsilon_0 |r-1$$

 $V = \frac{Q}{4\pi\epsilon_0 |r-r'|}$ $\rightarrow V(r) = \frac{Q}{4\pi\epsilon_0 r} + C . \quad [\text{ if 'C' taken as ref potential }]$ $\rightarrow \nabla \times E = 0, E = -\nabla V$

→ For monopole $E \propto \frac{1}{r^2}$; Dipole $E \propto \frac{1}{r^3}$.

$$V \propto \frac{1}{r}$$
; $V \propto \frac{1}{r}$

- Electric lines of force/ flux /direction of E always normal to equipotential lines . •
- Energy Density $W_E = \frac{1}{2} \sum_{k=1}^{N} Q_k V_k = \frac{1}{2} \int D \cdot E \, dv = \frac{1}{2} \int \varepsilon_0 E^2 \, dv$
- Continuity Equation $\nabla J = -\frac{\partial \rho_v}{\partial t}$.
- $\rho_v = \rho_{v_0} e^{-t/T_r}$ where $T_r = \text{Relaxation} / \text{regeneration time} = \epsilon / \sigma$ (less for good conductor)

Boundary Conditions :-

$E_{t_1} = E_{t_2}$

- Tangential component of 'E' are continuous across dielectric-dielectric Boundary .
- Tangential Components of 'D' are dis continues across Boundary . •
- $E_{t_1} = E_{t_2}; \quad \frac{D_{1t}}{D_{2t}} = \epsilon_1 / \epsilon_2.$
- Normal components are of 'D' are continues, where as 'E' are dis continues.
- D_{1n} $D_{2n} = \rho_s$; $E_{1n} = \frac{\varepsilon_2}{\varepsilon_1} E_{2n}$; $\frac{\tan \theta_1}{\tan \theta_2} = \frac{\varepsilon_1}{\varepsilon_2} = \frac{\varepsilon_{r1}}{\varepsilon_{r2}}$

•
$$H_{1t} = H_{2t}$$
 $B_{12} = \frac{\mu_1}{\mu_2} B_2 t$

$$B_{1n} = B_{2n}$$
 $H_{1n} = \frac{\mu_2}{\mu_1} H_{2n}$

Maxwell's Equations :-

 \rightarrow faraday law V_{emf} = $\oint E. dI = -\frac{d}{dt} \int B. ds$

$$\rightarrow$$
 Transformer emf = $\oint E. dI = -\int \frac{\partial B}{\partial t} ds \Rightarrow \nabla \times E = -\frac{\partial B}{\partial t}$

 \rightarrow Motional emf = $\nabla \times E_m = \nabla \times (\mu \times B)$.

 $\rightarrow \nabla \times H = J + \frac{\partial D}{\partial t}$

Electromagnetic wave propagation :-

- $\nabla^2 \mathbf{E} = \mu \mathbf{\epsilon} \ddot{E}$ $\nabla \times \mathbf{H} = \mathbf{J} + \dot{D}$ $D = \varepsilon E$ $\nabla \times \mathbf{E} = -\dot{B}$ $B = \mu H$ $\nabla^2 H = \mu \epsilon \ddot{H}$ $B = \mu H$ $J = \sigma E$ $\nabla . D = \rho_v$ $\nabla B = 0$
- $\frac{E_y}{H_z} = -\frac{E_z}{H_y} = \sqrt{\mu/\epsilon}$; E.H = 0 E \perp H in UPW

For loss less medium $\nabla^2 E - \rho^2 E = 0$ $\rho = \sqrt{j\omega\mu(\sigma + j\omega\epsilon)} = \alpha + j\beta$

$$\alpha = \omega \sqrt{\frac{\mu\epsilon}{2} \left(\sqrt{1 + \left(\frac{\sigma}{\omega\epsilon}\right)^2} - 1 \right)}$$
$$\beta = \omega \sqrt{\frac{\mu\epsilon}{2} \left(\sqrt{1 + \left(\frac{\sigma}{\omega\epsilon}\right)^2} + 1 \right)}$$

•
$$E(z, t) = E_0 e^{-\alpha z} \cos(\omega t - \beta z)$$
; $H_0 = E_0 / \eta$

•
$$\eta = \sqrt{\frac{j\omega\mu}{\sigma+j\omega\epsilon}} \quad |\eta| < \theta$$

- $|\eta| = \frac{\sqrt{\mu/\epsilon}}{\left[1 + \left(\frac{\sigma}{\omega\epsilon}\right)^2\right]^{1/4}}$ $\tan 2\theta_{\eta} = \sigma/\omega\epsilon$
- $\eta = \alpha + j\beta$ $\alpha \rightarrow \text{attenuation constant} \rightarrow \text{Neper}/\text{m}$. $|N_p| = 20 \log_{10} e = 8.686 \text{ dB}$
- For loss less medium $\sigma = 0$; $\alpha = 0$.
- $\beta \rightarrow \text{phase shift/length}; \quad \mu = \omega / \beta; \quad \lambda = 2\pi/\beta.$ $\frac{J_s}{J_d} = \left| \frac{\sigma E}{j\omega \epsilon E} \right| = \sigma / \omega \epsilon = \tan \theta \rightarrow \text{loss tanjent} \quad \theta = 2\theta_{\eta}$
- If $\tan \theta$ is very small ($\sigma < < \omega \epsilon$) \rightarrow good (lossless) dielectric
- If $\tan \theta$ is very large $(\sigma \gg \omega \epsilon) \rightarrow$ good conductor
- Complex permittivity $\epsilon_{\rm C} = \epsilon \left(1 \frac{j\sigma}{\omega\epsilon}\right) = \epsilon' j \epsilon''$. •
- Tan $\theta = \frac{\varepsilon''}{\varepsilon'} = \frac{\sigma}{\omega \epsilon}$.

Plane wave in loss less dielectric :- ($\sigma \approx 0$)

- $\alpha = 0$; $\beta = \omega \sqrt{\mu \epsilon}$; $\omega = \frac{1}{\sqrt{\mu \epsilon}}$; $\lambda = 2\pi/\beta$; $\eta = \sqrt{\mu_r/\epsilon_r} \angle 0$. •
- E & H are in phase in lossless dielectric

Free space :- ($\sigma = 0$, $\mu = \mu_0$, $\epsilon = \epsilon_0$)

• $\alpha = 0$, $\beta = \omega \sqrt{\mu_0 \epsilon_0}$; $u = 1/\sqrt{\mu_0 \epsilon_0}$, $\lambda = 2\pi/\beta$; $\eta = \sqrt{\mu_0/\epsilon_0} < 0 = 120\pi \angle 0$ Here also E & H in phase.

Good Conductor :-

 $\sigma >> \omega \varepsilon \qquad \sigma / \omega \varepsilon \to \infty \ \Rightarrow \ \sigma = \infty \quad \epsilon = \epsilon_0 \ ; \ \mu = \mu_0 \mu_r$

- $\alpha = \beta = \sqrt{\pi f \mu \sigma}$; $u = \sqrt{2\omega/\mu\sigma}$; $\lambda = 2\pi / \beta$; $\eta = \sqrt{\frac{W\mu}{\sigma}} \angle 45^{\circ}$
- Skin depth $\delta = 1/\alpha$

•
$$\eta = \frac{1}{\sigma\delta} \sqrt{2} e^{j\pi/4} = \frac{1+j}{\sigma\delta}$$

• Skin resistance
$$R_s = \frac{1}{\sigma\delta} = \sqrt{\frac{\pi f\mu}{\sigma}}$$

•
$$R_{ac} = \frac{R_{s.l}}{w}$$

• $R_{dc} = \frac{l}{\sigma s}$.

Poynting Vector :-

• $\int (E \times H) ds = -\frac{\partial}{dt} \int \frac{1}{2} [\epsilon E^2 + \mu H^2] dv - \int \sigma E^2 dv$ S v

•
$$\delta_{ave}(z) = \frac{1}{2} \frac{E_0^2}{|\eta|} e^{-2\alpha z} \cos \theta_{\eta} a_z$$

• Total time avge power crossing given area $P_{avge} = \int P_{ave}(s) ds$

Direction of propagation :- (**a**_k)

 $a_k \times a_E = a_H$

 $a_E \times a_H = a_k$

 \rightarrow Both E & H are normal to direction of propagation

 \rightarrow Means they form EM wave that has no E or H component along direction of propagation .

Reflection of plane wave :-

(a) Normal incidence Reflection coefficient $\Gamma = \frac{E_{r0}}{E_{i0}} = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$ T_{xn} coefficient $T = \frac{E_{t0}}{E_{i0}} = \frac{2\eta_2}{\eta_2 + \eta_1}$

Medium-I Dielectric, Medium-2 Conductor:-

 $\eta_2 > \eta_1$:- $\Gamma > 0$, there is a standing wave in medium & T_{xed} wave in medium '2'. Max values of $|E_1|$ occurs

$$Z_{\text{max}} = -n\pi/\beta_1 = \frac{-n\lambda_1}{2}; n = 0, 1, 2....$$
$$Z_{\text{min}} = \frac{-(2n+1)\pi}{2\beta_1} = \frac{-(2n+1)\lambda_1}{4}$$

$$\eta_2 < \eta_1 := E_{1\max} \text{ occurs } @ \beta_1 Z_{\max} = \frac{-(2n+1)\pi}{2} \Rightarrow Z_{\max} = \frac{-(2n+1)\pi}{2\beta_1} = \frac{-(2n+1)\lambda_1}{4}$$

$$\beta_1 Z_{\min} = n\pi \Rightarrow Z_{\min} = \frac{-n\pi}{\beta_1} = \frac{-n\lambda_1}{2}$$

 $\begin{array}{l} H_1 \text{ min occurs when there is } |t_1| \text{max} \\ S = & \frac{|E_1|_{max}}{|E_1|_{min}} = \frac{|H_1|_{max}}{|H_1|_{min}} = \frac{1+|\Gamma|}{1-|\Gamma|} \text{ ; } |\Gamma| = \frac{s-1}{s+1} \\ \text{Since } |\Gamma| < 1 \Rightarrow 1 \leq \delta \leq \infty \end{array}$

Transmission Lines :-

- Supports only TEM mode •
- $LC = \mu \epsilon$; $G/C = \sigma / \epsilon$.
- $\frac{d^2 V_s}{dz^2} r^2 V_s = 0; \quad \frac{d^2 I_s}{dz^2} r^2 I_s = 0$ $\Gamma = \sqrt{(R + j\omega L)(G + j\omega C)} = \alpha + j\beta$
- $V(z, t) = V_0^+ e^{-\alpha z} \cos(\omega t \beta z) + V_0^- e^{\alpha z} \cos(\omega t + \beta z)$

•
$$Z_0 = -\frac{V_0^-}{I_0^-} = \frac{R+j\omega L}{\gamma} = \frac{\gamma}{G+j\omega C} = \sqrt{\frac{R+j\omega L}{G+j\omega C}}$$

Lossless Line : $(R = 0 = G; \sigma = 0)$ $\rightarrow \gamma = \alpha + j\beta = j\omega\sqrt{LC}$; $\alpha = 0, \beta = w\sqrt{LC}$; $\lambda = 1/f\sqrt{LC}, u = 1/\sqrt{LC}$ $Z_0 = \sqrt{L/C}$

Distortion less :(R/L = G/C)

$$\rightarrow \alpha = \sqrt{RG}$$
; $\beta = \omega L \sqrt{\frac{G}{R}} = \omega C \sqrt{\frac{R}{G}} = \omega \sqrt{LC}$
 $\rightarrow Z_0 = \sqrt{\frac{R}{G}} = \sqrt{\frac{L}{C}}$; $\lambda = 1/f \sqrt{LC}$; $u = \frac{1}{\sqrt{LC}} = V_p$; $uz_0 = 1/C$, $u/z_0 = 1/L$

i/p impedance :- $Z_{in} = Z_0 \begin{bmatrix} \frac{Z_L + Z_0 \tan hl}{Z_0 + Z_L \tan hl} \end{bmatrix} \text{ for lossless line } \gamma = j\beta \implies \tan hj\beta l = j \tan \beta l$ $Z_{in} = Z_0 \begin{bmatrix} \frac{Z_L + jZ_0 \tan \beta l}{Z_0 + Z_L \tan \beta l} \end{bmatrix}$

• VSWR =
$$\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0}$$

CSWR =

• Transmission coefficient
$$S = 1 + \Gamma$$

• SWR =
$$\frac{V_{max}}{V_{min}} = \frac{I_{max}}{I_{min}} = \frac{1+|\Gamma_L|}{1-|\Gamma_L|} = \frac{Z_L}{Z_0} = \frac{Z_0}{Z_L}$$

(Z_L > Z₀) (Z_L < Z₀)

•
$$|Z_{in}|_{max} = \frac{V_{max}}{I_{min}} = SZ_0$$

• $|Z_{in}|_{min} = \frac{V_{min}}{I_{max}} = Z_0/S$

Shorted line :- $\Gamma_L = -1$, $S = \infty$ $Z_{in} = Z_{sc} = jZ_0 \tan \beta l$

XC

- $\Gamma_L = -1$, $S = \infty$ $Z_{in} = Z_{sc} = j Z_0 \tan \beta l$.
- Z_{in} may be inductive or capacitive based on length '0'

If $l < \lambda / 4 \rightarrow$ inductive (Z_{in} +ve) $\frac{\lambda}{4} < l < \lambda/2 \rightarrow$ capacitive (Z_{in} -ve)

Open circuited line :-

 $\begin{aligned} Z_{in} &= Z_{oc} = -jZ_0 \text{ cot } \beta l \\ \Gamma_l &= 1 \quad \text{s} = \infty \qquad \qquad l < \lambda / 4 \quad \text{capacitive} \\ \frac{\lambda}{4} < l < \lambda / 2 \quad \text{inductive} \\ Z_{sc} \ Z_{oc} &= Z_0^2 \end{aligned}$

Matched line : $(Z_L = Z_0)$ $Z_{in} = Z_0$ $\Gamma = 0$; s = 1 No reflection . Total wave T_{xed} . So, max power transfer possible

Behaviour of Transmission Line for Different lengths :-

 $l = \lambda / 4 \rightarrow Z_{sc} = \infty$ $Z_{oc} = 0$ $\} \rightarrow$ impedance inverter @ $l = \lambda / 4$

$$l = \lambda/2$$
: $Z_{in} = Z_0 \Rightarrow \frac{Z_{sc}=0}{Z_{oc}=\infty}$ impedance reflector @ $l = \lambda/2$

Wave Guides :-

TM modes : $(H_z = 0)$ $E_z = E_0 \sin\left(\frac{m\pi}{a}\right) x \sin\left(\frac{n\pi}{b}\right) y e^{-nz}$

$$h^{2} = k_{x}^{2} + k_{y}^{2} \qquad \therefore \gamma = \sqrt{\left(\frac{m\pi}{a}\right)^{2} + \left(\frac{n\pi}{b}\right)^{2} - \omega^{2}\mu\epsilon} \qquad \text{where } k = \omega \sqrt{\mu\epsilon}$$

m \rightarrow no. of half cycle variation in X-direction

 $n \! \rightarrow \! no.$ of half cycle variation in Y- direction .

- Cut off frequency $\omega_{\rm C} = \frac{1}{\sqrt{\mu\epsilon}} \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}$ $\gamma = 0; \ \alpha = 0 = \beta$ • $k^2 < \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 \rightarrow \text{Evanscent mode} \ ; \ \gamma = \alpha \ ; \ \beta = 0$
- $k^2 > \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 \rightarrow \text{Propegation mode} \quad \gamma = j\beta \quad \alpha = 0$

$$\beta = \sqrt{k^2 - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2}$$

- $f_c = \frac{u'_p}{2} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$ $u'_p = phase \ velocity = \frac{1}{\sqrt{\mu\epsilon}} is \ lossless \ dielectric \ medium$
- 18 No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar, Bangalore. Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : <u>onlineies.com@gmail.com</u> Site: <u>www.onlineIES.com</u> Google+: <u>http://bit.ly/gplus_iesgate</u> FB: <u>www.facebook.com/onlineies</u>

$$\bullet \quad \lambda_c = u'/f_c = \frac{2}{\sqrt{(\frac{m}{a})^2 + (\frac{n}{b})^2}}$$

- $\beta = \beta' \sqrt{1 \left(\frac{f_c}{f}\right)^2}$ $\beta' = \omega/W$ $\beta' = \text{phase constant in dielectric medium.}$
- $u_p = \omega/\beta$ $\lambda = 2\pi/\beta = u_p/f \rightarrow$ phase velocity & wave length in side wave guide
- $\eta_{TM} = \frac{E_x}{H_y} = -\frac{E_y}{H_x} = \frac{\beta}{\omega \epsilon} = \sqrt{\frac{\mu}{\epsilon}} \sqrt{1 \left(\frac{f_c}{f}\right)^2}$

$$\eta_{TM} = \eta' \sqrt{1 - \left(\frac{f_c}{f}\right)^2} \quad \eta' \rightarrow \text{impedance of UPW in medium}$$

TE Modes :- $(E_z = 0)$

 $\rightarrow \eta_{TE} > \eta_{TM}$

 \rightarrow TE₁₀ Dominant mode

Antennas :-

Hertzian Dipole :- $H_{\Phi s} = \frac{jI_0\beta dl}{4\pi r} \sin \theta e^{-j\beta\gamma}$

 $E_{\theta s} = \eta H_{\Phi s}$

Half wave Dipole :-

$$H_{\phi s} = \frac{jI_0 e^{-j\beta\gamma} \cos\left(\frac{\pi}{2}\cos\theta\right)}{2\pi\gamma\sin\theta}; \quad E_{\theta s} = \eta H_{\Phi s}$$

EDC & Analog

Energy gap $E_{G/si}=1.21-3.6 \times 10^{-4}.T \text{ ev} \\ E_{G/Ge}=0.785-2.23 \times 10^{-4}.T \text{ ev} \}$ Energy gap depending on temperature

•
$$E_F = E_C - KT \ln\left(\frac{N_C}{N_P}\right) = E_V + KT \ln\left(\frac{N_v}{N_P}\right)$$

- $E_{\rm F} = E_{\rm C} {\rm KT} \, {\rm Im}_{(N_D)} = E_{\rm v} + {\rm KT} \, {\rm Im}_{(N_A)}$ No. of electrons $n = {\rm N}_{\rm c} \, {\rm e}^{-({\rm E}_{\rm c} {\rm E}_{\rm f})/{\rm RT}}$ No. of holes $p = {\rm N}_{\rm v} \, {\rm e}^{-({\rm E}_{\rm f} {\rm E}_{\rm v})/{\rm RT}}$ (KT in ev) •
- •
- Mass action law $n_p = n_i^2 = N_c N_v e^{-EG/KT}$
- Drift velocity $v_d = \mu E$ (for si $v_d \le 10^7$ cm/sec)
- No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & 19 Jayanagar, Bangalore. Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email: onlineies.com@gmail.com Site: www.onlineIES.com Google+: http://bit.ly/gplus_iesgate FB: www.facebook.com/onlineies

• Hall voltage $v_{\rm H} = \frac{\text{B.I}}{w_{\rm o}}$. Hall coefficient $R_{\rm H} = 1/\rho$.

 $\rho \rightarrow$ charge density = qN_0 = ne ...

- Conductivity $\sigma = \rho \mu$; $\mu = \sigma R_H$.
- Max value of electric field @ junction $E_0 = -\frac{q}{\epsilon_{ei}} N_d$. $n_{n0} = -\frac{q}{\epsilon_{ei}} N_A$. n_{p0} .
- Charge storage @ junction $Q_+ = -Q_- = qA x_{n0}N_D = qA x_{p0}N_A$

EDC

- Diffusion current densities $J_p = -q D_p \frac{dp}{dx}$ $J_n = -q D_n \frac{dn}{dx}$
- Drift current Densities = $q(p \mu_p + n\mu_n)E$
- μ_p , μ_n decrease with increasing doping concentration.
- $\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = KT/q \approx 25 \text{ mv} @ 300 \text{ K}$
- Carrier concentration in N-type silicon $n_{n0} = N_D$; $p_{n0} = n_i^2 / N_D$
- Carrier concentration in P-type silicon $p_{p0} = N_A$; $n_{p0} = n_i^2 / N_A$

• Junction built in voltage
$$V_0 = V_T \ln \left(\frac{N_A N_D}{n_i^2} \right)$$

• Width of Depletion region $W_{dep} = x_p + x_n = \sqrt{\frac{2\varepsilon_s}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) (V_0 + V_R)}$ * $\left(\frac{2\varepsilon_{ft}}{a} = 12.93m \text{ for si}\right)$

*
$$\left(\frac{2cft}{q} = 12.93m \text{ for s}\right)$$

•
$$\frac{x_n}{x_p} = \frac{N_A}{N_D}$$

• Charge stored in depletion region
$$q_J = \frac{q.N_A N_D}{N_A + N_D}$$
. A. W_{dep}

• Depletion capacitance
$$C_j = \frac{\varepsilon_s A}{W_{dep}}$$
; $C_{j0} = \frac{\varepsilon_s A}{W_{dep}/V_R=0}$

 $C_{j} = C_{j0} / \left(1 + \frac{V_{R}}{V_{0}}\right)^{m}$ $C_{j} = 2C_{j0} \text{ (for forward Bias)}$

• Forward current
$$I = I_p + I_n$$
; $I_p = Aq n_i^2 \frac{D_p}{L_p N_D} (e^{V/V_T} - 1)$
 $I_n = Aq n_i^2 \frac{D_n}{L_n N_A} (e^{V/V_T} - 1)$

• Saturation Current
$$I_s = Aq n_i^2 \left(\frac{D_p}{L_p N_D} + \frac{D_n}{L_n N_A} \right)$$

- Minority carrier life time $\tau_p = L_p^2 \ / \ D_p$; $\tau_n = L_n^2 \ / \ D_n$
- Minority carrier charge storage $Q_p = \tau_p I_p$, $Q_n = \tau_p I_n$ $Q = Q_p + Q_n = \tau_T I$ τ_T = mean transist time
- Diffusion capacitance $C_d = \left(\frac{\tau_T}{\eta V_T}\right) I = \tau.g \Rightarrow C_d \propto I.$ $\tau \rightarrow \text{carrier life time}, g = \text{conductance} = I / \eta V_T$
- $I_{02} = 2^{(T_2 T_1)/10} I_{01}$
- Junction Barrier Voltage $V_j = V_B = V_r$ (open condition)
 - $= V_r V$ (forward Bias)

=
$$V_r + V$$
 (Reverse Bias)

- Probability of filled states above 'E' $f(E) = \frac{1}{1 + e^{(E-E_f)/KT}}$
- 20 No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar, Bangalore. Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : <u>onlineies.com@gmail.com</u> Site: <u>www.onlineIES.com</u> Google+: <u>http://bit.ly/gplus_iesgate</u> FB: <u>www.facebook.com/onlineies</u>

- Drift velocity of $e^ v_d \le 10^7$ cm/sec •
- Poisson equation $\frac{d^2V}{dx^2} = \frac{-\rho_V}{\epsilon} = \frac{-nq}{\epsilon} \Rightarrow \frac{dv}{dx} = E = \frac{-nqx}{\epsilon}$

Transistor :-

- $I_E = I_{DE} + I_{nE}$
- $I_{C} = I_{Co} \alpha I_{E} \rightarrow \text{Active region}$ $I_{C} = -\alpha I_{E} + I_{Co} (1 e^{V_{C}/V_{T}})$

Common Emitter :-

- $\beta = \frac{\alpha}{1-\alpha}$ • $I_{\rm C} = (1+\beta) I_{\rm Co} + \beta I_{\rm B}$
- $I_{CEO} = \frac{I_{CO}}{1-\alpha} \rightarrow Collector current when base open$
- $I_{CBO} \rightarrow Collector current when I_E = 0$ $I_{CBO} > I_{CO}$. $V_{BE,sat}$ or $V_{BC,sat} \rightarrow -2.5 \text{ mv} / {}^0 \text{ C}$; $V_{CE,sat} \rightarrow \frac{V_{BE,sat}}{10} = -0.25 \text{ mv} / {}^0 \text{ C}$
- Large signal Current gain $\beta = \frac{I_C I_{CBo}}{I_B + I_{CBo}}$
- D.C current gain $\beta_{dc} = \frac{I_C}{I_B} = h_{FE}$ •
- $(\beta_{dc} = h_{FE}) \approx \beta$ when $I_B > I_{CBO}$
- Small signal current gain $\beta' = \frac{\partial I_C}{\partial I_R}\Big|_{V_{CE}} = h_{fe} = \frac{h_{FE}}{1 (I_{CB0} + I_B)\frac{\partial h_{FE}}{\partial I_C}}$ •
- Over drive factor = $\frac{\beta_{active}}{\beta_{forced} \rightarrow under saturation}$ \therefore $I_{C sat} = \beta_{forced} I_{B sat}$

Conversion formula :-

 $CC \leftrightarrow CE$

CC \leftrightarrow **CE** • $h_{ic} = h_{ie}$; $h_{rc} = 1$; $h_{fc} = -(1 + h_{fe})$; $h_{oc} = h_{oe}$

$CB \leftrightarrow CE$

• $h_{ib} = \frac{h_{ie}}{1+h_{fe}}; \ h_{ib} = \frac{h_{ie} h_{oe}}{1+h_{fe}} - h_{re}; \ h_{fb} = \frac{-h_{fe}}{1+h_{fe}}; \ h_{ob} = \frac{h_{oe}}{1+h_{fe}}$

CE parameters in terms of CB can be obtained by interchanging B & E.

Specifications of An amplifier :-

•
$$A_{I} = \frac{-h_{f}}{1+h_{0}Z_{L}}$$

$$Z_{i} = h_{i} + h_{r} A_{I}Z_{L}$$

$$A_{vs} = \frac{A_{v}Z_{i}}{Z_{i}+R_{s}} = \frac{A_{I}Z_{L}}{Z_{i}+R_{s}} = \frac{A_{Is}Z_{L}}{R_{s}}$$

$$A_{V} = \frac{A_{I}Z_{L}}{Z_{i}}$$

$$Y_{0} = h_{0} - \frac{h_{f}h_{r}}{h_{i}+R_{s}}$$

$$A_{Is} = \frac{A_{v}R_{s}}{Z_{i}+R_{s}} = \frac{A_{vs}R_{s}}{Z_{L}}$$

Choice of Transistor Configuration :-

- For intermediate stages CC can't be used as $A_V < 1$
- CE can be used as intermediate stage •
- CC can be used as o/p stage as it has low o/p impedance •
- CC/CB can be used as i/p stage because of i/p considerations. •

Stability & Biasing :- (Should be as min as possible)

• For $S = \frac{\Delta I_C}{\Delta I_{Co}}\Big|_{V_{B0,\beta}}$ $S' = \frac{\Delta I_C}{\Delta V_{BE}}\Big|_{I_{C0,\beta}}$ $S'' = \frac{\Delta I_C}{\Delta \beta}\Big|_{V_{BE,I_{CO}}}$

$$\Delta I_{C} = S. \ \Delta I_{Co} + S' \ \Delta V_{BE} + S'' \ \Delta \beta$$

• For fixed bias $S = \frac{1+\beta}{1-\beta \frac{dI_B}{dI_C}} = 1+\beta$

• Collector to Base bias
$$S = \frac{1+\beta}{1+\beta\frac{R_C}{R_C+R_B}}$$
 $0 < s < 1+\beta = \frac{1+\beta}{1+\beta\left(\frac{R_C+R_E}{R_C+R_E+R_B}\right)}$

• Self bias $S = \frac{1+\beta}{1+\beta \frac{R_E}{R_E+R_{th}}} \approx 1 + \frac{R_{th}}{R_e} \qquad \beta R_E > 10 R_2$

$$\bullet \qquad R_1 = \frac{V_{cc} R_{th}}{V_{th}} \quad ; \ R_2 = \frac{V_{cc} R_{th}}{V_{cc} - V_{th}}$$

• For thermal stability [$V_{cc} - 2I_c (R_C + R_E)$] [0.07 $I_{co} \cdot S$] < 1/ θ ; $V_{CE} < \frac{V_{CC}}{2}$

Hybrid – $pi(\pi)$ - Model :-

$$g_{m} = |I_{C}| / V_{T}$$

$$r_{b'e} = h_{fe} / g_{m}$$

$$r_{b'e} = h_{ie} - r_{b'e}$$

$$r_{b'e} = r_{b'e} / h_{re}$$

$$g_{ce} = h_{oe} - (1 + h_{fe}) g_{b'c}$$

$$E$$

$$r_{be}$$

$$r_{be}$$

$$r_{be}$$

$$r_{ce}$$

$$r_{ce}$$

$$r_{ce}$$

$$g_{m} V_{b'e}$$

$$E$$

$$For CE :-$$

$$f_{\beta} = \frac{g_{b'e}}{2\pi(C_{e} + C_{e})} = \frac{g_{m}}{h_{fe}2\pi(C_{e} + C_{c})}$$

$$f_{T} = h_{fe} f_{\beta} ; \quad f_{H} = \frac{1}{2\pi r_{b'e} C} = \frac{g_{b'e}}{2\pi C}$$

$$C = C_{e} + C_{c} (1 + g_{m} R_{L})$$

$$f_{T} = S.C current gain Bandwidth product f_{H} = Upper cutoff frequency$$
For CC :-

Tbe

•
$$f_{H} = \frac{1 + g_{m}R_{L}}{2\pi C_{L}R_{L}} \approx \frac{g_{m}}{2\pi C_{L}} = \frac{f_{T \ C_{e}}}{C_{L}} = \frac{g_{m} + g_{b}'_{e}}{2\pi (C_{L} + C_{e})}$$

For CB:-

•
$$f_{\alpha} = \frac{1 + h_{fe}}{2\pi r_{b'e}(C_{C} + C_{e})} = (1 + h_{fe}) f_{\beta} = (1 + \beta) f_{\beta}$$

С

•
$$f_T = \frac{\beta}{1+\beta} f_\alpha$$
 $f_\alpha > f_T > f_\beta$
Ebress mol model :-
 $I_C = -\alpha_N I_E + I_{CO} (1 - e^{V/V_T})$
 $I_E = -\alpha_1 I_C + I_{EO} (1 - e^{V/V_T})$
 $\alpha_1 I_{CO} = \alpha_N I_{EO}$
Multistage Amplifiers :-
• $f_H^* = f_H \sqrt{2^{1/n} - 1}$; $f_L^* = \frac{f_L}{\sqrt{2^{1/n} - 1}}$
• Rise time $t_T = \frac{0.35}{f_H} = \frac{0.35}{B.W}$
• $t_T^* = 1.1 \sqrt{t_{T1}^2 + t_{T2}^2 + \cdots}$
• $f_L^* = 1.1 \sqrt{t_{T1}^2 + t_{T2}^2 + \cdots}$
• $f_H^* = f_H + (1 + h_{fO}) 2R_e = 2 h_{fO} R_e \approx 2\beta R_e$
• $g_m = \frac{\alpha_0 I_{EQ}}{4V_T} = \frac{I_C}{4V_T} = g_m \text{ of BJT}/4$ $\alpha_0 \rightarrow DC$ value of α
• CMRR = $\frac{h_{R_H} h_{LC}}{R_H + h_{LC}}$; $R_e \uparrow_{A \rightarrow} Z_i \uparrow, A_d \uparrow \& CMRR \uparrow$
Darlington Pair :-
• $A_I = (1 + \beta_d) (1 + \beta_2)$; $A_V \approx 1 (< 1)$
• $Z_I = \frac{(1 + h_{IC})^2 R_{R2}}{1 + h_{R_H} h_{R_{R2}}} \Omega$ [if Q_1 & Q_2 have same type] = $A_1 R_{e2}$

•
$$R_o = \frac{R_s}{(1+h_{fe})^2} + \frac{2 h_{ie}}{1+h_{fe}}$$

•
$$g_m = (1 + \beta_2) g_{m1}$$

Tuned Amplifiers : (Parallel Resonant ckts used) :

•
$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$
 $Q \rightarrow Q'$ factor of resonant ckt which is very high

- $B.W = f_0 / Q$
- $f_L = f_0 \frac{\Delta BW}{2}$

•
$$f_H = f_0 + \frac{\Delta BW}{2}$$

• For double tuned amplifier 2 tank circuits with same f_0 used . $f_0 = \sqrt{f_L f_H}$.

MOSFET (Enhancement) [Channel will be induced by applying voltage]

- NMOSFET formed in p-substrate
- If $V_{GS} \ge V_t$ channel will be induced & i_D (Drain \rightarrow source)
- $V_t \rightarrow +ve$ for NMOS
- $i_D \propto (V_{GS} V_t)$ for small V_{DS}
- $V_{DS} \uparrow \rightarrow$ channel width @ drain reduces .

 $V_{DS} = V_{GS} - V_t$ channel width $\approx 0 \rightarrow$ pinch off further increase no effect

- For every $V_{GS} > V_t$ there will be $V_{DS,sat}$
- $i_D = K'_n [(V_{GS} V_t) V_{DS} \frac{1}{2} V_{DS}^2] (\frac{W}{L}) \rightarrow \text{triode region} (V_{DS} < V_{GS} V_t)$

 $C_n = \mu_n C_{ox}$

•
$$i_D = \frac{1}{2} K'_n \left(\frac{W}{L}\right) [V_{DS}^2] \rightarrow saturation$$

• $r_{DS} = \frac{1}{K'_n \left(\frac{W}{L}\right)(V_{GS} - V_t)} \rightarrow Drain \text{ to source resistance in triode region}$

PMOS :-

- Device operates in similar manner except V_{GS} , V_{DS} , V_t are -ve
- i_D enters @ source terminal & leaves through Drain .

$$V_{GS} \le V_t \rightarrow \text{induced channel}$$
 $V_{DS} \ge V_{GS} - V_t \rightarrow \text{Continuous channel}$
 $i_D = K'_p \left(\frac{W}{L}\right) [(V_{GS} - V_t)^2 - \frac{1}{2}V_{DS}^2]$ $K'_p = \mu_p C_{ox}$

 $V_{DS} \le V_{GS} - V_t \rightarrow Pinched off channel$.

- NMOS Devices can be made smaller & thus operate faster . Require low power supply .
- Saturation region \rightarrow Amplifier
- For switching operation Cutoff & triode regions are used

• NMOS PMOS

$$V_{GS} ≥ V_t V_{GS} ≤ V_t → induced channel$$

$$V_{GS} - V_{DS} > V_t V_{GS} - V_{DS} < V_t → Continuous channel(Triode region)$$

$$V_{DS} ≥ V_{GS} - V_t V_{DS} ≤ V_{GS} - V_t → Pinchoff (Saturation)$$

Depletion Type MOSFET :- [channel is physically implanted . i_0 flows with $V_{GS} = 0$]

- i_D V_{DS} characteristics are same except that V_t is -ve for n-channel
- Value of Drain current obtained in saturation when $V_{GS} = 0 \Rightarrow I_{DSS}$.

$$\therefore I_{\text{DSS}} = \frac{1}{2} K'_n \left(\frac{W}{L}\right) V_t^2 .$$

MOSFET as Amplifier :-

- For saturation $V_D > V_{GS}$ V_t
- To reduce non linear distortion $v_{gs} << 2(V_{GS} V_t)$

•
$$i_d = K'_n \left(\frac{W}{L}\right) (V_{GS} - V_t) v_{gs} \Rightarrow \qquad g_m = K'_n \left(\frac{W}{L}\right) (V_{GS} - V_t)$$

- $\frac{v_{\rm d}}{v_{\rm gs}} = -g_{\rm m} R_{\rm D}$
- Unity gain frequency $f_T = \frac{g_m}{2\pi(C_{gs}+C_{gq})}$

JFET :-

• $V_{GS} \le V_p \implies i_D = 0 \rightarrow Cut \text{ off}$

•
$$V_p \leq V_{GS} \leq 0$$
, $V_{DS} \leq V_{GS} - V_p$
 $i_D = I_{DSS} \left[2 \left(1 - \frac{V_{GS}}{V_p} \right) \left(\frac{V_{DS}}{-V_p} \right) - \left(\frac{V_{DS}}{V_p} \right)^2 \right] \right\} \rightarrow \text{Triode}$

•
$$V_p \le V_{GS} \le 0$$
 , $V_{DS} \ge V_{GS}$ - V_p

$$\begin{split} \mathbf{i}_{D} &= \mathbf{I}_{DSS} \left(1 - \frac{V_{GS}}{V_{p}} \right)^{2} \Rightarrow \mathbf{V}_{GS} = \mathbf{V}_{p} \left(1 - \sqrt{\frac{\mathbf{I}_{D}}{\mathbf{I}_{DSS}}} \right) \\ \mathbf{g}_{m} &= \frac{2\mathbf{I}_{DSS}}{|\mathbf{V}_{p}|} \left(1 - \frac{V_{GS}}{V_{p}} \right) = \frac{2\mathbf{I}_{DSS}}{|\mathbf{V}_{p}|} \sqrt{\frac{\mathbf{I}_{D}}{\mathbf{I}_{DSS}}} \end{split} \right\} \rightarrow \text{Saturation}$$

Zener Regulators :-

- For satisfactory operation $\frac{V_i V_z}{R_s} \ge I_{Z_{min}} + I_{L_{max}}$
- 25 No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar, Bangalore. Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : <u>onlineies.com@gmail.com</u> Site: <u>www.onlineIES.com</u> Google+: <u>http://bit.ly/gplus_iesgate</u> FB: <u>www.facebook.com/onlineies</u>

•
$$R_{S_{max}} = \frac{V_{s_{min}} - V_{z_0} - I_{Z_{min}} r_z}{I_{Z_{min}} + I_{L_{max}}}$$

- Load regulation = $(r_z \parallel R_s)$ •
- Line Regulation = $\frac{r_z}{R_c + r_z}$.
- For finding min R_L take $V_{s \min} \& V_{zk}$, I_{zk} (knee values (min)) calculate according to that .

Operational Amplifier:- (VCVS)

- Fabricated with VLSI by using epitaxial method •
- High i/p impedance, Low o/p impedance, High gain, Bandwidth, slew rate. •
- FET is having high i/p impedance compared to op-amp. •
- Gain Bandwidth product is constant. •
- Closed loop voltage gain $A_{CL} = \frac{A_{OL}}{1 \pm \beta A_{OL}}$ $\beta \rightarrow$ feed back factor •

•
$$\Rightarrow V_0 = \frac{-1}{RC} \int V_i \, dt \rightarrow LPF$$
 acts as integrator;

•
$$\Rightarrow V_0 = \frac{-R}{L} \int V_i \, dt$$
;

$$V_0 = \frac{-L}{R} \frac{dv_i}{dt}$$
 (HPF)

• For Op-amp integrator
$$V_0 = \frac{-1}{\tau} \int V_i dt$$
; Differentiator $V_0 = -\tau \frac{dv_i}{dt}$

• Slew rate SR =
$$\frac{\Delta V_0}{\Delta t} = \frac{\Delta V_0}{\Delta t} \cdot \frac{\Delta V_i}{\Delta t} = A \cdot \frac{\Delta V_i}{\Delta t}$$

• Max operating frequency
$$f_{max} = \frac{slew \, rate}{2\pi \cdot \Delta V_0} = \frac{slew \, rate}{2\pi \times \Delta V_i \times A}$$
.

- In voltage follower Voltage series feedback
- In non inverting mode voltage series feedback
- In inverting mode voltage shunt feed back

•
$$V_0 = -\eta V_T \ln \left(\frac{V_i}{RI_0}\right)$$

•
$$V_0 = -V_{BE}$$

$$= -\eta V_{\rm T} \ln \left(\frac{V_{\rm s}}{R I_{\rm C0}}\right)$$

Error in differential % error = $\frac{1}{CMRR} \left(\frac{V_c}{V_d}\right) \times 100 \%$ •

No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar, Bangalore. Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email: onlineies.com@gmail.com Site: www.onlineIES.com Google+: http://bit.ly/gplus_iesgate FB: www.facebook.com/onlineies

26

Power Amplifiers :-

- Fundamental power delivered to load $P_1 = \left(\frac{B_1}{\sqrt{2}}\right)^2 R_L = \frac{B_1^2}{2} R_L$
- Total Harmonic power delivered to load $P_{T} = \left[\frac{B_{1}^{2}}{2} + \frac{B_{2}^{2}}{2} + \cdots \right] R_{L}$

$$= P_1 \left[1 + \left(\frac{B_2}{B_1} \right)^2 + \left(\frac{B_3}{B_1} \right)^2 + \dots \dots \right]$$

= [1+D²] P₁

Where $D = \sqrt{+D_2^2 + \dots + D_n^2}$ $D_n = \frac{B_n}{B_1}$ D = total harmonic Distortion.

Class A operation :-

- $o/p I_c$ flows for entire 360^o
- 'Q' point located @ centre of DC load line i.e., $V_{ce} = V_{cc} / 2$; $\eta = 25 \%$
- Min Distortion, min noise interference, eliminates thermal run way
- Lowest power conversion efficiency & introduce power drain
- $P_T = I_C V_{CE} i_c V_{ce}$ if $i_c = 0$, it will consume more power
- P_T is dissipated in single transistors only (single ended)

Class B:-

- I_C flows for 180^o; 'Q' located @ cutoff ; $\eta = 78.5\%$; eliminates power drain
- Higher Distortion, more noise interference, introduce cross over distortion
- Double ended . i.e ., 2 transistors . $I_C = 0$ [transistors are connected in that way] $P_T = i_c V_{ce}$
- $P_T = i_c V_{ce} = 0.4 P_0$ $P_T \rightarrow power dissipated by 2 transistors .$

Class AB operation :-

- I_C flows for more than 180^0 & less than 360^0
- 'Q' located in active region but near to cutoff ; $\eta = 60\%$
- Distortion & Noise interference less compared to class 'B' but more in compared to class 'A'
- Eliminates cross over Distortion

Class 'C' operation :-

- I_C flows for < 180 ; 'Q' located just below cutoff ; $\eta = 87.5\%$
- Very rich in Distortion ; noise interference is high .

Oscillators :-

• For RC-phase shift oscillator $f = \frac{1}{2\pi RC\sqrt{6+4K}}$ $h_{fe} \ge 4k + 23 + \frac{29}{k}$ where $k = R_c/R$

$$f = \frac{1}{2\pi RC\sqrt{6}} \qquad \mu > 29$$

• For op-amp RC oscillator $f = \frac{1}{2\pi RC\sqrt{6}} |A_f| \ge 29 \Rightarrow R_f \ge 29 R_1$

Wein Bridge Oscillator :-

$$f = \frac{1}{2\pi\sqrt{R' R'' C'C''}} \qquad \begin{array}{l} h_{fe} \geq 3 \\ \mu \geq 3 \\ A \geq 3 \Rightarrow R_{f} \geq 2 R_{1} \end{array}$$

Hartley Oscillator :-

$$\begin{split} f = & \frac{1}{2\pi\sqrt{(L_1+L_2)C}} & \quad |h_{fe}| \ \geq & \frac{L_2}{L_1} \\ & | \ \mu \ | \ \geq & \frac{L_2}{L_1} \\ & |A| \ \geq & \frac{L_2}{L_1} \\ & \downarrow \\ & \frac{R_f}{R_1} \end{split}$$

Colpits Oscillator :-

MatheMatics

Matrix :-

- If $|A| = 0 \rightarrow$ Singular matrix ; $|A| \neq 0$ Non singular matrix
- Scalar Matrix is a Diagonal matrix with all diagonal elements are equal
- Unitary Matrix is a scalar matrix with Diagonal element as '1' $(A^Q = (A^*)^T = A^{-1})$
- If the product of 2 matrices are zero matrix then at least one of the matrix has det zero
- Orthogonal Matrix if $AA^{T} = A^{T} \cdot A = I \Rightarrow A^{T} = A^{-1}$
- $A = A^{T} \rightarrow Symmetric$ $A = -A^{T} \rightarrow Skew symmetric$

Properties :- (if A & B are symmetrical)

- A + B symmetric
- KA is symmetric
- AB + BA symmetric
- AB is symmetric iff AB = BA
- For any 'A' \rightarrow A + A^T symmetric ; A A^T skew symmetric.
- Diagonal elements of skew symmetric matrix are zero
- If A skew symmetric $A^{2n} \rightarrow$ symmetric matrix ; $A^{2n-1} \rightarrow$ skew symmetric
- If 'A' is null matrix then Rank of A = 0.

Consistency of Equations :-

- $r(A, B) \neq r(A)$ is consistent
- r(A, B) = r(A) consistent &
 - if r(A) = no. of unknowns then unique solution r(A) < no. of unknowns then ∞ solutions.

Hermition, Skew Hermition, Unitary & Orthogonal Matrices :-

- $A^T = A^* \rightarrow$ then Hermition
- $A^{T} = -A^{*} \rightarrow$ then Hermition
- Diagonal elements of Skew Hermition Matrix must be purely imaginary or zero
- Diagonal elements of Hermition matrix always real .
- A real Hermition matrix is a symmetric matrix.
- $|KA| = K^n |A|$

Eigen Values & Vectors :-

• Char. Equation $|A - \lambda I| = 0$.

Roots of characteristic equation are called eigen values . Each eigen value corresponds to non zero solution X such that $(A - \lambda I)X = 0$. X is called Eigen vector .

- Sum of Eigen values is sum of Diagonal elements (trace)
- Product of Eigen values equal to Determinent of Matrix .
- Eigen values of A^T & A are same
- λ is Eigen value of A then $1/\lambda \rightarrow A^{-1} \& \frac{|A|}{\lambda}$ is Eigen value of adj A
- $\lambda_1, \lambda_2, \dots, \lambda_n$ are Eigen values of A then

 $K\!A \to K\,\lambda_1$, $K\,\lambda_2$ $K\,\lambda_n$

 $A^m \rightarrow \, \lambda_1^m$, λ_2^m λ_n^m .

 $\begin{array}{ll} A+KI & \rightarrow \ \lambda_1+k \ , \ \lambda_2+k \ , \ \ldots \ldots \ \lambda_n+k \\ (A-KI)^2 \rightarrow \ (\lambda_1-k)^2 \ , \ \ldots \ldots \ (\lambda_n-k)^2 \end{array}$

- Eigen values of orthogonal matrix have absolute value of '1'.
- Eigen values of symmetric matrix also purely real .
- Eigen values of skew symmetric matrix are purely imaginary or zero .
- λ_1 , λ_2 ,, λ_n distinct eigen values of A then corresponding eigen vectors X_1 , X_2 ,, X_n for linearly independent set.
- $adj (adj A) = |A|^{n-2}$; $|adj (adj A)| = |A|^{(n-1)^2}$

Complex Algebra :-

• Cauchy Rieman equations

 $\frac{\partial x}{\partial x}$ Neccessary & Sufficient Conditions for f(z) to be analytic

- $\int_{c} f(z)/(Z-a)^{n+1} dz = \frac{2\pi i}{n!} [f^{n}(a)]$ if f(z) is analytic in region 'C' & Z = a is single point
- $f(z) = f(z_0) + f'(z_0) \frac{(z-z_0)^n}{1!} + f''(z_0) \frac{(z-z_0)^2}{2!} + \dots + f^n(z_0) \frac{(z-z_0)^n}{n!} + \dots$ Taylor Series

if $z_0 = 0$ then it is called Mclauren Series $f(z) = \sum_{0}^{\infty} a_n (z - z_0)^n$; when $a_n = \frac{f_n(z_0)}{n!}$

• If f(z) analytic in closed curve 'C' except @ finite no. of poles then

 $\int_{C} f(z)dz = 2\pi i$ (sum of Residues @ singular points within 'C')

$$\operatorname{Res} f(a) = \lim_{z \to a} (Z - a f(z))$$

$$= \Phi(\mathbf{a}) / \varphi'(\mathbf{a})$$

= $\lim_{Z \to a} \frac{1}{(n-1)!} \frac{d^{n-1}}{dz^{n-1}} ((Z - \mathbf{a})^n \mathbf{f}(z))$

Calculus :-

Rolle's theorem :-

If f(x) is

- (a) Continuous in [a, b]
- (b) Differentiable in (a, b)
- (c) f(a) = f(b) then there exists at least one value $C \in (a, b)$ such that f'(c) = 0.

Langrange's Mean Value Theorem :-

If f(x) is continuous in [a, b] and differentiable in (a, b) then there exists at least one value 'C' in (a, b) such that $f'(c) = \frac{f(b)-f(a)}{b-a}$

Cauchy's Mean value theorem :-

- If f(x) & g(x) are two function such that
- (a) f(x) & g(x) continuous in [a, b]
- (b) f(x) & g(x) differentiable in (a, b)

(c)
$$g'(x) \neq 0 \quad \forall x \text{ in } (a, b)$$

Then there exist atleast one value C in (a, b) such that

$$f'(c) / g'(c) = \frac{f(b)-f(a)}{g(b)-g(a)}$$

Properties of Definite integrals :-

- $a < c < b \int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$ $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a x) dx$
- No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & 31 Jayanagar, Bangalore. Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email: onlineies.com@gmail.com Site: www.onlineIES.com Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies

- $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$ f(x) is even
 - = 0 f(x) is odd
- $\int_0^a f(x) dx = 2 \int_0^a f(x) dx$ if f(x) = f(2a-x)
- = 0 if f(x) = -f(2a x)
- $\int_0^{na} f(x) dx = n \int_0^a f(x) dx$ if f(x) = f(x + a)
- $\int_a^b f(x). dx = \int_a^b f(a+b-x). dx$
- $\int_0^a x f(x) dx = \frac{a}{2} \int_0^a f(x) dx$ if f(a x) = f(x)
- $\int_0^{\pi/2} \sin^n x = \int_0^{\pi/2} \cos^n x = \frac{(n-1)(n-3)(n-5)\dots 2}{n(n-2)(n-4)\dots 3}$ if 'n' odd

$$=\frac{(n-1)(n-3).....1}{n(n-2)(n-4).....2} \cdot \left(\frac{\pi}{2}\right) \text{ if 'n' even}$$

• $\int_0^{\pi/2} \sin^m x \cdot \cos^n x \cdot dx = \frac{\{(m-1)(m-3)\dots(m-5)\dots(2 \text{ or } 1)\}\{(n-1)(n-3)\dots(2 \text{ or } 1)\}K}{(m+n)(m+n-2)(m+n-4)\dots(2 \text{ or } 1)}$

Where $K = \pi / 2$ when both m & n are even otherwise k = 1

Maxima & Minima :-

A function f(x) has maximum @ x = a if f'(a) = 0 and f''(a) < 0

A function f(x) has minimum @ x = a if f'(a) = 0 and f''(a) > 0

Constrained Maximum or Minimum :-

To find maximum or minimum of u = f(x, y, z) where x, y, z are connected by $\Phi(x, y, z) = 0$

Working Rule :-

- (i) Write $F(x, y, z) = f(x, y, z) + \lambda \varphi(x, y, z)$
- (ii) Obtain $F_x = 0$, $F_y = 0$, $F_z = 0$

(ii) Solve above equations along with $\varphi = 0$ to get stationary point .

Laplace Transform :-

- $L\left\{\frac{d^n}{dt^n}f(s)\right\} = s^n f(s) s^{n-1} f(0) s^{n-2} f'(0) \dots f^{n-1}(0)$
- $L \{ t^n f(t) \} = (-1)^n \frac{d^n}{ds^n} f(s)$

•
$$\frac{f(t)}{t} \Leftrightarrow \int_{s}^{\infty} f(s) ds$$

•
$$\int_0^t f(u) du \Leftrightarrow f(s) / s$$
.

Inverse Transforms :-

• $\frac{s}{(s^2+a^2)^2} = \frac{1}{2a}t \sin at$

•
$$\frac{s^2}{(s^2+a^2)^2} = \frac{1}{2a} [\sin at + at \cos at]$$

- $\frac{1}{(s^2+a^2)^2} = \frac{1}{2a^3} [\sin at at \cos at]$
- $\frac{s}{s^2 a^2} = \cos hat$
- $\frac{a}{s^2 a^2} =$ Sin hat

Laplace Transform of periodic function : L { f(t) } = $\frac{\int_0^T e^{-st} f(t)dt}{1 - e^{-sT}}$

Numerical Methods :-

Bisection Method :-

(1) Take two values of $x_1 \& x_2$ such that $f(x_1)$ is +ve & $f(x_2)$ is -ve then $x_3 = \frac{x_1 + x_2}{2}$ find $f(x_3)$ if $f(x_3)$ +ve then root lies between $x_3 \& x_2$ otherwise it lies between $x_1 \& x_3$.

Regular falsi method :-

Same as bisection except $x_2 = x_0 - \frac{x_1 - x_0}{f(x_1) - f(x_0)} f(x_0)$

Newton Raphson Method :-

$$\mathbf{x_{n+1}} = \mathbf{x_n} - \frac{\mathbf{f}(\mathbf{x_n})}{\mathbf{f}'(\mathbf{x_n})}$$

Pi cards Method :-

$$y_{n+1} = y_0 + \int_{x_0}^{x} f(x, y_n) \qquad \leftarrow \frac{dy}{dx} = f(x, y)$$

Taylor Series method :-

$$\frac{dy}{dx} = f(x, y) \qquad \qquad y = y_0 + (x - x_0) (y')_0 + \frac{(x - x_0)^2}{2!} (y)_0'' + \dots + \frac{(x - x_0)^n}{n!} (y)_0^n$$

Euler's method :-

$$y_{1} = y_{0} + h f(x_{0}, y_{0}) \qquad \leftarrow \frac{dy}{dx} = f(x, y_{0})$$

$$y_{1}^{(1)} = y_{0} + \frac{h}{2} [f(x_{0}, y_{0}) + f(x_{0} + h, y_{1})$$

$$y_{1}^{(2)} = y_{0} + \frac{h}{2} [f(x_{0}, y_{0}) + f(x_{0+h}, y_{1}^{(1)})]$$

$$\vdots$$

$$\vdots$$

Calculate till two consecutive value of 'y' agree

$$y_{2} = y_{1} + h f(x_{0} + h, y_{1})$$

$$y_{2}^{(1)} = y_{0} + \frac{h}{2} [f(x_{0} + h, y_{1}) + f(x_{0} + 2h, y_{2})]$$

Runge's Method :-

$$k_{1} = h f(x_{0}, y_{0})$$

$$k_{2} = h f(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{1}}{2})$$
finally compute $K = \frac{1}{6}(K_{1} + 4K_{2} + K_{3})$

$$k' = h f(x_{0} + h, y_{0} + k_{1})$$

$$k_{3} = h (f(x_{0} + h, y_{0} + k'))$$

Runge Kutta Method :-

$$\mathbf{k}_1 = \mathbf{h} \, \mathbf{f}(\mathbf{x}_0, \, \mathbf{y}_0)$$

 $k_{1} = h f(x_{0}, y_{0})$ $k_{2} = h f(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{1}}{2})$ finally compute $K = \frac{1}{6}(K_{1} + 2K_{2} + 2K_{3} + K_{4})$ No.1 Training center for **GATE/IES/JTO/PSUs** in Bangalore @ **Malleshwaram & Jayanagar**, Bangalore. Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 34 Email : onlineies.com@gmail.com Site: www.onlineIES.com Google+: http://bit.ly/gplus_iesgate FB: www.facebook.com/onlineies

$$\begin{aligned} k_3 &= h f(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}) & \therefore \text{ approximation vale } y_1 &= y_0 + K \\ k_3 &= h f(x_0 + h, y_0 + k_3) \end{aligned}$$

Trapezoidal Rule :-

$$\int_{x_0}^{x_0+nh} f(x) dx = \frac{h}{2} \left[\left(y_0 + y_n \right) + 2 \left(y_1 + y_2 + \dots + y_{n-1} \right) \right]$$

f(x) takes values $y_0, y_1 \dots$

$$(a) x_0, x_1, x_2 \dots$$

Simpson's one third rule :-

$$\int_{x_0}^{x_0+nh} f(x) dx = \frac{h}{3} \left[(y_0 + y_n) + 4 (y_1 + y_3 + \dots + y_{n-1}) + 2 (y_2 + y_4 + \dots + y_{n-2}) \right]$$

Simpson three eighth rule :-

$$\int_{x_0}^{x_0+nh} f(x) dx = \frac{3h}{8} \left[(y_0 + y_n) + 3 (y_1 + y_2 + y_4 + y_5 + \dots + y_{n-1}) + 2 (y_3 + y_6 + \dots + y_{n-3}) \right]$$

Differential Equations :-

Variable & Seperable :-

General form is $f(y) dy = \phi(x) dx$

Sol:
$$\int f(y) dy = \int \phi(x) dx + C$$

Homo generous equations :-

General form
$$\frac{dy}{dx}$$
 =

 $f(x, y) \& \phi(x, y)$ Homogenous of same degree

Sol: Put $y = Vx \implies \frac{dy}{dx} = V + x \frac{dv}{dx}$ & solve

f(x,y)

Reducible to Homogeneous :-

General form
$$\frac{dy}{dx} = \frac{ax+by+c}{a'x+b'y+c'}$$

(i) $\frac{a}{a'} \neq \frac{b}{b'}$

Sol: Put x = X + h y = Y + k

$$\Rightarrow \frac{dy}{dx} = \frac{ax+by+(ah+bk+c)}{a'x+b'y+(a'h+b'k+c')}$$
 Choose h, k such that $\frac{dy}{dx}$ becomes homogenous then solve by $Y = VX$

(ii)
$$\frac{a}{a'} = \frac{b}{b'}$$

Sol: Let $\frac{a}{a'} = \frac{b}{b'} = \frac{1}{m}$ $\frac{dy}{dx} = \frac{ax+by+c}{m(ax+by)+c}$

Put $ax + by = t \Rightarrow \frac{dy}{dx} = \left(\frac{dt}{dx} - a\right)/b$

Then by variable & seperable solve the equation .

Libnetz Linear equation :-

General form $\frac{dy}{dx} + py = Q$ where P & Q are functions of "x"

$$I.F = e^{\int p.dx}$$

Sol: $y(I.F) = \int Q.(I.F) dx + C$.

Exact Differential Equations :-

General form M dx + N dy = 0 $M \rightarrow f(x, y)$

 $N \rightarrow f(x, y)$

If $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ then

Sol: $\int M. dx + \int (\text{terms of } N \text{ containing } x) dy = C$

(y constant)

Rules for finding Particular Integral :-

$$\frac{1}{f(D)} e^{ax} = \frac{1}{f(a)} e^{ax}$$
$$= x \frac{1}{f'(a)} e^{ax} \quad \text{if } f(a) = 0$$
$$= x^2 \frac{1}{f''(a)} e^{ax} \quad \text{if } f'(a) = 0$$

$$\frac{1}{f(b^2)}\sin(ax+b) = \frac{1}{f(-a^2)}\sin(ax+b) \qquad f(-a^2) \neq 0$$

$$= x \frac{1}{f'(-a^2)}\sin(ax+b) \qquad f(-a^2) = 0$$

$$= x^2 \frac{1}{f''(-a^2)}\sin(ax+b)$$
Same applicable for $\cos(ax+b)$

$$\frac{1}{f(D)}x^m = [f(D)]^y x^m$$

$$\frac{1}{f(D)} e^{ax} f(x) = e^{ax} \frac{1}{f(D+a)} f(x)$$

Vector Calculus :-

Green's Theorem :-

$$\int_{C} (\phi \, dx + \phi \, dy) = \int \int \left(\frac{\partial \Psi}{\partial x} - \frac{\partial \phi}{\partial y} \right) dx \, dy$$

This theorem converts a line integral around a closed curve into Double integral which is special case of Stokes theorem.

Series expansion :-

Taylor Series :-

$$f(x) = f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^n(a)}{n!} (x-a)^n$$

$$f(x) = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^n(0)}{n!} x^n + \dots \text{ (mc lower series)}$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2} x^2 + \dots + |nx| < 1$$

$$e^x = 1 + x + \frac{x^2}{2!} + \dots$$

$$Sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

$$Cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$$

Digital Electronics

- •
- •
- Fan out of a logic gate = $\frac{I_{OH}}{I_{IH}}$ or $\frac{I_{OL}}{I_{IL}}$ Noise margin : $V_{OH} V_{IH}$ or $V_{OL} V_{IL}$ Power Dissipation $P_D = V_{cc} I_{cc} = V_{cc} \left[\frac{I_{CCL} + I_{CCH}}{2} \right]$ $I_{CCL} \rightarrow I_c$ when o/p low •

 $I_{CCH} \rightarrow I_c$ when o/p high.

- TTL, ECL & CMOS are used for MSI or SSI
- Logic swing : V_{OH} V_{OL} •
- RTL , DTL , TTL \rightarrow saturated logic ECL \rightarrow Un saturated logic •
- Advantages of Active pullup; increased speed of operation, less power consumption. •
- For TTL floating i/p considered as logic "1" & for ECL it is logic "0". •
- "MOS" mainly used for LSI & VLSI . fan out is too high •
- ECL is fastest gate & consumes more power. •
- CMOS is slowest gate & less power consumption •
- NMOS is faster than CMOS. •
- Gates with open collector o/p can be used for wired AND operation (TTL) •
- Gates with open emitter o/p can be used for wired OR operation (ECL) •
- ROM is nothing but combination of encoder & decoder. This is non volatile memory. •
- SRAM : stores binary information interms of voltage uses FF. •
- DRAM : infor stored in terms of charge on capacitor . Used Transistors & Capacitors . •
- SRAM consumes more power & faster than DRAM. •
- CCD, RAM are volatile memories. •
- 1024×8 memory can be obtained by using 1024×2 memories .
- No. of memory ICs of capacity $1k \times 4$ required to construct memory of capacity $8k \times 8$ are "16" •

DAC

• FSV =
$$V_R \left(1 - \frac{1}{2^n}\right)$$

- Resolution = $\frac{\text{step size}}{\text{FSV}} = \frac{N}{V_R \left(1 \frac{1}{2^n}\right)}$ × 100%
- Accuracy = $\pm \frac{1}{2}$ LSB = $\pm \frac{1}{2^{n+1}}$
- Analog o/p = K. digital o/p

PROM, PLA & PAL :-

AND OR	
Fixed Programm	nable PROM
Programmable fixed	PAL
Programmable Programm	nable PLA

Flash Type ADC : $2^{n-1} \rightarrow \text{comparators}$ $2^n \rightarrow resistors$ $2^n \times n \rightarrow \text{Encoder}$

Fastest ADC :-

- Successive approximation ADC : n clk pulses
- Counter type ADC : $2^n 1$ clk pulses

No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & 38 Jayanagar, Bangalore. Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email: onlineies.com@gmail.com Site: www.onlineIES.com Google+: http://bit.ly/gplus_iesgate FB: www.facebook.com/onlineies

ADC * LSB = Voltage range / 2^n

* Resolution = $\frac{FSV}{2^{n}-1}$

* Quantisation error = $\frac{V_R}{2n}$ %

• Dual slope integrating type : 2ⁿ⁺¹ clock pulses .

Flip Flops :-

$$a(n+1) = S + R' Q$$

= D
= JQ' + K'Q
= TQ' + T' Q

Excitation tables :-

		s	R			J	К			D			Т
0	0	0	х	0	0	0	х	0	0	0	0	0	0
0	1	1	0	0	1	1	х	0	1	1	0	1	1
1	0	0	1	1	0	х	1	1	0	0	1	0	1
1	1	х	0	1	1	х	0	1	1	1	1	1	0

- For ring counter total no.of states = n
- For twisted Ring counter = "2n" (Johnson counter / switch tail Ring counter).
- To eliminate race around condition $t_{pd clock} < < t_{pd FF}$.
- In Master slave master is level triggered & slave is edge triggered

Combinational Circuits :-

Multiplexer :-

- 2^{n} i/ps; 1 o/p & 'n' select lines.
- It can be used to implement Boolean function by selecting select lines as Boolean variables
- For implementing 'n' variable Boolean function $2^n \times 1$ MUX is enough.
- For implementing "n + 1" variable Boolean $2^n \times 1$ MUX + NOT gate is required.
- For implementing "n + 2" variable Boolean function $2^n \times 1$ MUX + Combinational Ckt is required
- If you want to design $2^m \times 1$ MUX using $2^n \times 1$ MUX. You need $2^{m-n} 2^n \times 1$ MUXes
- 39 No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar, Bangalore. Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : <u>onlineies.com@gmail.com</u> Site: <u>www.onlineIES.com</u> Google+: <u>http://bit.ly/gplus_iesgate</u> FB: <u>www.facebook.com/onlineies</u>

Decoder :-

- n i/p & 2ⁿ o/p's
- used to implement the Boolean function . It will generate required min terms @ o/p & those terms should be "OR" ed to get the result .
- Suppose it consists of more min terms then connect the max terms to NOR gate then it will give the same o/p with less no. of gates .
- If you want to Design $m \times 2^m$ Decoder using $n \times 2^n$ Decoder . Then no. of $n \times 2^n$ Decoder required $= \frac{2^m}{2^n}$.
- In Parallel ("n" bit) total time delay = $2_n t_{nd}$.
- For carry look ahead adder delay = $2 t_{pd}$.

Microprocessors

Institute Of Engineering Studies (IES, Bangalore) Formulae Sheet in ECE/TCE Department

- Clock frequency $=\frac{1}{2}$ crystal frequency
- Hardware interrupts

- ,	i i i i i wui		TR RS' RS'	$\begin{array}{c c} \text{RAP (RST 4.5)} \\ \text{ST 7.5} \\ \text{ST 6.5} \\ \text{TR} \end{array} \qquad \begin{array}{c} \text{0024H} & \text{both edge level} \\ \rightarrow \text{Edge triggered} & \text{003CH} \\ \text{0034 H} \\ \text{level triggered} & \text{002C} \\ \text{Non vectored} \end{array}$
•	Software	interru		T 0 0000H T 1 0008H 2 0010H : 0018H : 7 0038H
	S ₁	S ₀		
	0	0	Halt	
	0	1	write	
	1	0	Read	
	1	1	fetch	

• HOLD & HLDA used for Direct Memory Access . Which has highest priority over all interrupts .

Flag Registers :-

- Sign flag :- After arthematic operation MSB is resolved for sign flag . $S = 1 \rightarrow -ve$ result
- If $Z = 1 \Rightarrow \text{Result} = 0$
- <u>AC</u>: Carry from one stage to other stage is there then AC = 1
- <u>P</u>: $P = 1 \Rightarrow$ even no. of one's in result.
- <u>CY</u>: if arthematic operation Results in carry then CY = 1
- For INX & DCX no flags effected
- In memory mapped I/O ; I/O Devices are treated as memory locations . You can connect max of 65536 devices in this technique .
- In I/O mapped I/O, I/O devices are identified by separate 8-bit address . same address can be used to identify i/p & o/p device .
- Max of 256 i/p & 256 o/p devices can be connected .

Programmable Interfacing Devices :-

- 8155 \rightarrow programmable peripheral Interface with 256 bytes RAM & 16-bit counter
- $8255 \rightarrow$ Programmable Interface adaptor
- 8253 \rightarrow Programmable Interval timer
- $8251 \rightarrow \text{programmable Communication interfacing Device (USART)}$
- $8257 \rightarrow \text{Programmable DMA controller (4 channel)}$
- $8259 \rightarrow Programmable Interrupt controller$
- $8272 \rightarrow$ Programmable floppy Disk controller
- CRT controller
- Key board & Display interfacing Device
- **RLC** :- Each bit shifted to adjacent left position . D_7 becomes D_0 .

CY flag modified according to D7

RAL :- Each bit shifted to adjacent left position . D_7 becomes CY & CY becomes D_0 .

ROC :-CY flag modified according D₀

RAR :- D_0 becomes CY & CY becomes D_7

CALL & RET Vs PUSH & POP :-

CALL & RET

- When CALL executes , µp automatically stores 16 bit address of instruction next to CALL on the Stack
- CALL executed, SP decremented by 2
- RET transfers contents of top 2 of SP to PC
- RET executes "SP" incremented by 2

Some Instruction Set information :-

CALL Instruction

- CALL \rightarrow 18T states SRRWW
- CC \rightarrow Call on carry 9-18 states
- $CM \rightarrow Call on minus 9-18$
- $CNC \rightarrow Call on no carry$
- $CZ \rightarrow Call on Zero ; CNZ call on non zero$

42 No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar, Bangalore. Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : <u>onlineies.com@gmail.com</u> Site: <u>www.onlineIES.com</u> Google+: <u>http://bit.ly/gplus_iesgate</u> FB: <u>www.facebook.com/onlineies</u>

PUSH & POP

- * Programmer use PUSH to save the contents rp on stack
- * PUSH executes "SP" decremented by "2".
- * same here but to specific "rp".
- * same here

- $CP \rightarrow Call on +ve$
- $CPE \rightarrow Call on even parity$
- $CPO \rightarrow Call on odd parity$
- RET : 10 T
- RC : 6/ 12 'T' states

Jump Instructions :-

- JMP $\rightarrow 10$ T
- JC \rightarrow Jump on Carry 7/10 T states
- JNC \rightarrow Jump on no carry
- $JZ \rightarrow Jump \text{ on zero}$
- JNZ \rightarrow Jump on non zero
- JP \rightarrow Jump on Positive
- JM \rightarrow Jump on Minus
- JPE \rightarrow Jump on even parity

JPO \rightarrow Jump on odd parity .

- PCHL : Move HL to PC
- PUSH : 12 T ; POP : 10 T
- SHLD: address : store HL directly to address 16 T
- SPHL : Move HL to SP 6T
- STAX : R_p store A in memory 7T
- STC : set carry 4T
- XCHG : exchange DE with HL "4T"

XTHL :- Exchange stack with HL 16 T

- For "AND" operation "AY" flag will be set & "CY" Reset
- For "CMP" if A < Reg/mem : CY \rightarrow 1 & Z \rightarrow 0 (Nothing but A-B) A > Reg/mem : CY \rightarrow 0 & Z \rightarrow 0

6T

 $A = Reg/mem : Z \rightarrow 1 \& CY \rightarrow 0.$

- "DAD" Add HL + RP (10T) \rightarrow fetching , busidle , busidle
- DCX, INX won't effect any flags. (6T)
- 43 No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar, Bangalore. Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : <u>onlineies.com@gmail.com</u> Site: <u>www.onlineIES.com</u> Google+: <u>http://bit.ly/gplus_iesgate</u> FB: <u>www.facebook.com/onlineies</u>

Institute Of Engineering Studies (IES, Bangalore) Formulae Sheet in ECE/TCE Department

- DCR, INR effects all flags except carry flag . "Cy" wont be modified
- "LHLD" load "HL" pair directly
- "RST" \rightarrow 12T states
- SPHL , RZ, RNZ, PUSH, PCHL, INX , DCX, CALL \rightarrow fetching has 6T states
- PUSH 12 T ; POP 10T

44No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram &
Jayanagar, Bangalore. Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008
Email : onlineies.com@gmail.com
Site: www.onlineIES.com
Google+: http://bit.ly/gplus_iesgate FB: www.facebook.com/onlineies