Communication Systems

Amplitude Modulation :

DSB-SC:

$$
\mathrm{u}(\mathrm{t})=\mathrm{A}_{\mathrm{C}} \mathrm{~m}(\mathrm{t}) \cos 2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{t}
$$

Power $P=\frac{A_{C}^{2}}{2} P_{M}$

Conventioanal AM :

$u(t)=A_{C}[1+m(t)] \operatorname{Cos} 2 \pi f_{c} t$. as long as $|m(t)| \leq 1$ demodulation is simple.
Practically $m(t)=a m_{n}(t)$.
Modulation index $\mathrm{a}=\frac{\mathrm{m}(\mathrm{t})}{\mathrm{m}_{\mathrm{n}}(\mathrm{t})} \quad, \quad \mathrm{m}_{\mathrm{n}}(\mathrm{t})=\frac{\mathrm{m}(\mathrm{t})}{\max |\mathrm{m}(\mathrm{t})|}$
Power $=\frac{\mathrm{A}_{\mathrm{C}}^{2}}{2}+\frac{\mathrm{A}_{\mathrm{C}}^{2} \mathrm{a}^{2}}{4}$
SSB-AM :
\rightarrow Square law Detector $\operatorname{SNR}=\frac{2}{\mathrm{~K}_{\mathrm{a}} \mathrm{m}(\mathrm{t})}$
Square law modulator
\downarrow
$\mathrm{K}_{\mathrm{a}}=2 \mathrm{a}_{2} / \mathrm{a}_{1} \rightarrow$ amplitude Sensitivity
Envelope Detector $\mathrm{R}_{\mathrm{s}} \mathrm{C}(\mathrm{i} / \mathrm{p}) \ll 1 / \mathrm{f}_{\mathrm{c}} \quad \mathrm{R}_{1} \mathrm{C}(\mathrm{o} / \mathrm{P}) \gg 1 / \mathrm{f}_{\mathrm{c}} \quad \mathrm{R}_{\mathrm{l}} \mathrm{C} \ll 1 / \omega$

$$
\frac{1}{\mathrm{R}_{1} \mathrm{C}} \geq \frac{\omega_{\mathrm{m}} \mu}{\sqrt{1-\mu^{2}}}
$$

Frequency \& Phase Modulation : Angle Modulation :-

$\mathrm{u}(\mathrm{t})=\mathrm{A}_{\mathrm{C}} \operatorname{Cos}\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{t}+\varnothing(\mathrm{t})\right)$
$\phi(\mathrm{t})\left\{\begin{array}{c}K_{p} m(t) \rightarrow \quad P M \\ 2 \pi \mathrm{~K}_{\mathrm{f}} \int_{-\infty}^{\mathrm{t}} \mathrm{m}(\mathrm{t}) . \mathrm{dt} \rightarrow \mathrm{FM}\end{array} \quad \mathrm{K}_{\mathrm{p}} \& \mathrm{~K}_{\mathrm{f}}\right.$ phase \& frequency deviation constant
\rightarrow max phase deviation $\Delta \emptyset=K_{p} \max |\mathrm{~m}(\mathrm{t})|$
\rightarrow max frequency deviation $\Delta f=K_{f} \max |m(t)|$

Bandwidth :

Effective Bandwidth $B_{C}=2(\beta+1) \mathrm{f}_{\mathrm{m}} \quad \rightarrow 98 \%$ power

Noise in Analog Modulation :-

$$
\begin{gathered}
\rightarrow(\mathrm{SNR})_{\text {Base Band }}=\left(\frac{\mathrm{S}}{\mathrm{~N}}\right)_{0}=\frac{\mathrm{P}_{\mathrm{m}}}{\mathrm{P}_{\mathrm{n}}}=\frac{\mathrm{P}_{\mathrm{R}}}{\mathrm{~N}_{0} \mathrm{~B}} \\
\mathrm{R}=\mathrm{m}(\mathrm{t}) \cos 2 \pi \mathrm{ff}_{\mathrm{c}} \quad \therefore \mathrm{P}_{\mathrm{R}}=\mathrm{P}_{\mathrm{m}} / 2
\end{gathered}
$$

$\rightarrow(\mathrm{SNR})_{\mathrm{DSB}-\mathrm{SC}}=\frac{\mathrm{P}_{\mathrm{m}} / 4}{\mathrm{P}_{\mathrm{n} / / 4}}=\frac{P_{m}}{2 N_{0} B}=\frac{2 \mathrm{P}_{\mathrm{R}}}{2 \mathrm{~N}_{0} \mathrm{~B}}=\frac{\mathrm{P}_{\mathrm{R}}}{\mathrm{N}_{0} \mathrm{R}}=\left(\frac{\mathrm{S}}{\mathrm{N}}\right)_{0}=(\mathrm{SNR})_{\text {Base band }}$
$\rightarrow(\mathrm{SNR})_{\text {SSB }-\mathrm{SC}}=\frac{\mathrm{P}_{\mathrm{m}} / 4}{\mathrm{P}_{\mathrm{ni} / 4}}=\frac{P_{m}}{N_{0} B}=\frac{\mathrm{P}_{\mathrm{R}}}{\mathrm{N}_{0} \mathrm{~B}}=\left(\frac{\mathrm{S}}{\mathrm{N}}\right)_{0}=(\mathrm{SNR})_{\text {Base band }}$.

$$
\left(\frac{\mathrm{S}}{\mathrm{~N}}\right)_{\text {com AM }}=\frac{\mu^{2} \mathrm{P}_{\mathrm{m}}}{1+\mu^{2} \mathrm{P}_{\mathrm{m}}} \cdot \frac{\mathrm{P}_{\mathrm{R}}}{\mathrm{~N}_{0} \mathrm{~B}}=\eta\left(\frac{\mathrm{S}}{\mathrm{~N}}\right)_{\text {Base Band }} \quad \eta=\frac{\mu^{2} P_{\mathrm{m}}}{1+\mu^{2} \mathrm{P}_{\mathrm{m}}}
$$

Noise in Angle Modulation :-

$$
\left(\frac{\mathrm{S}}{\mathrm{~N}}\right)_{\mathbf{0}}=\left\{\begin{array}{c}
\beta_{p}^{2} \mathrm{P}_{\mathrm{M}_{\mathrm{n}}}\left(\frac{\mathrm{~S}}{\mathrm{~N}}\right)_{\mathrm{b}}, \mathrm{PM} \\
3 \beta_{\mathrm{f}}^{2} \mathrm{P}_{\mathrm{M}_{\mathrm{n}}}\left(\frac{\mathrm{~S}}{\mathrm{~N}}\right)_{\mathrm{b}}, \mathrm{FM}
\end{array}\right.
$$

PCM :-
\rightarrow Min. no of samples required for reconstruction $=2 \omega=f_{s} ; \omega=$ Bandwidth of msg signal .
\rightarrow Total bits required $=v \mathrm{f}_{\mathrm{s}}$ bps.$\quad v \rightarrow$ bits / sample
\rightarrow Bandwidth $=\mathrm{R}_{\mathrm{b}} / 2=v \mathrm{f}_{\mathrm{s}} / 2=v . \omega$
$\rightarrow \mathrm{SNR}=1.76+6.02 v$
\rightarrow As Number of bits increased SNR increased by $6 \mathrm{~dB} / \mathrm{bit}$. Band width also increases.

Delta Modulation :-

\rightarrow By increasing step size slope over load distortion eliminated [Signal raised sharply]
\rightarrow By Reducing step size Grannualar distortion eliminated. [Signal varies slowly]

Digital Communication

Matched filter:

\rightarrow impulse response $\mathrm{a}(\mathrm{t})=\mathrm{P}^{*}(\mathrm{~T}-\mathrm{t}) . \mathrm{P}(\mathrm{t}) \rightarrow \mathrm{i} / \mathrm{p}$
\rightarrow Matched filter o/p will be max at multiples of ' T '. So, sampling @ multiples of ' T ' will give max SNR ($2^{\text {nd }}$ point)
\rightarrow matched filter is always causal $\mathrm{a}(\mathrm{t})=0$ for $\mathrm{t}<0$
\rightarrow Spectrum of o/p signal of matched filter with the matched signal as i / p ie, except for a delay factor ; proportional to energy spectral density of i / p.

$$
\begin{aligned}
& \varnothing_{0}(\mathrm{f})=\mathrm{H}_{\mathrm{opt}}(\mathrm{f}) \emptyset(\mathrm{f})=\varnothing(\mathrm{f}) \emptyset^{*}(\mathrm{f}) \mathrm{e}^{-2 \pi \mathrm{fT}} \\
& \emptyset_{0}(\mathrm{f})=|\emptyset(\mathrm{f})|^{2} \mathrm{e}^{-\mathrm{j} 2 \pi \mathrm{fT}}
\end{aligned}
$$

2 No. 1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram \& Jayanagar, Bangalore. Ph: o 99003 99699/ o 9741900225 / 080-32552008

Email : onlineies.com@gmail.com Site: www.onlineIES.com Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies
$\rightarrow \mathrm{o} / \mathrm{p}$ signal of matched filter is proportional to shifted version of auto correlation fine of i / p signal

$$
\begin{array}{ll}
& \emptyset_{0}(\mathrm{t})=\mathrm{R}_{\varnothing}(\mathrm{t}-\mathrm{T}) \\
\text { At } \mathrm{t}=\mathrm{T} & \emptyset_{0}(\mathrm{~T})=\mathrm{R}_{\emptyset}(0) \rightarrow \text { which proves } 2^{\text {nd }} \text { point }
\end{array}
$$

Cauchy-Schwartz in equality :-

$$
\int_{-\infty}^{\infty}\left|g_{1}^{*}(t) g_{2}(t) d t\right|^{2} \leq \int_{-\infty}^{\infty} g_{1}^{2}(t) d t \quad \int_{-\infty}^{\infty}\left|g_{2}(t)\right|^{2} d t
$$

If $\mathrm{g}_{1}(\mathrm{t})=\mathrm{c} \mathrm{g}_{2}(\mathrm{t})$ then equality holds otherwise ' $<$ ' holds

Raised Cosine pulses :

$$
\begin{gathered}
P(t)=\frac{\operatorname{Sin}\left(\frac{\pi t}{T}\right)}{\left(\frac{\pi}{T}\right)} \cdot \operatorname{Cos}\left(\frac{\pi \alpha t}{T}\right) \\
1-4 \alpha^{2} \mathrm{~T}^{2} \\
P(f)=\left\{\begin{array}{c}
T,|f| \leq \frac{1-\alpha}{2 \mathrm{~T}} \\
\mathrm{~T} \cos ^{2}\left(\frac{\pi t}{2 \alpha}\left(|f|-\frac{1-\alpha}{2 \mathrm{~T}}\right)\right) ; \frac{1-\alpha}{2 \mathrm{~T}} \leq|\mathrm{f}| \leq \frac{1+\alpha}{2 \mathrm{~T}} \\
0,|\mathrm{f}|>\frac{1+\alpha}{2 \mathrm{~T}}
\end{array}\right.
\end{gathered}
$$

- Bamdwidth of Raised cosine filter $\mathrm{f}_{\mathrm{B}}=\frac{1+\alpha}{2 \mathrm{~T}} \Rightarrow$ Bit rate $\frac{1}{\mathrm{~T}}=\frac{2 \mathrm{f}_{\mathrm{B}}}{1+\alpha}$
$\alpha \rightarrow$ roll of factor
$\mathrm{T} \rightarrow$ signal time period
\rightarrow For Binary PSK P $=\mathrm{Q}\left(\frac{d}{2 \sigma}\right)=\mathrm{Q}\left(\sqrt{\frac{2 \varepsilon_{s}}{N_{0}}}\right)=\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{\varepsilon_{s}}{N_{0}}}\right)$.
$\rightarrow 4$ PSK $\mathrm{P}_{\mathrm{e}}=2 \mathrm{Q}\left(\sqrt{\frac{2 \varepsilon_{b}}{N_{0}}}\right)\left[1-\frac{1}{2} Q\left(\sqrt{\frac{2 \varepsilon_{b}}{N_{0}}}\right)\right]$

FSK:-

For BPSK

$$
\mathrm{P}_{\mathrm{e}}=\mathrm{Q}\left(\frac{d}{2 \sigma}\right)=\mathrm{Q}\left(\sqrt{\frac{\varepsilon_{s}}{N_{0}}}\right)=\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{\varepsilon_{s}}{2 N_{0}}}\right)
$$

\rightarrow All signals have same energy (Const energy modulation)
\rightarrow Energy \& min distance both can be kept constant while increasing no. of points . But Bandwidth Compramised.
\rightarrow PPM is called as Dual of FSK .
\rightarrow For DPSK $P_{e}=\frac{1}{2} \mathrm{e}^{-\varepsilon_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}}$
\rightarrow Orthogonal signals require factor of ' 2 ' more energy to achieve same P_{e} as anti podal signals
\rightarrow Orthogonal signals are 3 dB poorer than antipodal signals. The 3 dB difference is due to distance $\mathrm{b} / \mathrm{w} 2$ points.
\rightarrow For non coherent FSK $P_{e}=\frac{1}{2} \mathrm{e}^{-\varepsilon_{b} / \mathrm{N}_{0}}$
\rightarrow FPSK \& 4 QAM both have comparable performance .
$\rightarrow 32$ QAM has 7 dB advantage over 32 PSK.

- Bandwidth of Mary PSK $=\frac{2}{T_{S}}=\frac{2}{T_{\text {blog }}^{m}} \quad ; \mathrm{S}=\frac{\log _{2}^{m}}{2}$
- Bandwidth of Mary FSK $=\frac{M}{2 T_{s}}=\frac{M}{2 T_{b} \log _{2}^{m}} ; S=\frac{\log _{2}^{m}}{m}$
- Bandwidth efficiency $S=\frac{\mathrm{R}_{\mathrm{b}}}{\text { B.W }}$.
- Symbol time $\mathrm{T}_{\mathrm{s}}=\mathrm{T}_{\mathrm{b}} \log _{2}^{\mathrm{m}}$
- \quad Band rate $=\frac{\text { Bit rate }}{\log _{2}^{m}}$

Signals \& Systems

$$
\begin{aligned}
\rightarrow & \text { Energy of a signal } \int_{-\infty}^{\infty}|\mathrm{x}(\mathrm{t})|^{2} \mathrm{dt}=\sum_{n=-\infty}^{\infty}|x[n]|^{2} \\
\rightarrow & \text { Power of a signal } \mathrm{P}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-\mathrm{T}}^{\mathrm{T}}|\mathrm{x}(\mathrm{t})|^{2} \mathrm{dt}=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{\mathrm{n}=-\mathrm{N}}^{\mathrm{N}}|\mathrm{x}[\mathrm{n}]|^{2} \\
\rightarrow & \mathrm{x}_{1}(\mathrm{t}) \rightarrow \mathrm{P}_{1} ; \mathrm{x}_{2}(\mathrm{t}) \rightarrow \mathrm{P}_{2} \\
& \mathrm{x}_{1}(\mathrm{t})+\mathrm{x}_{2}(\mathrm{t}) \rightarrow \mathrm{P}_{1}+\mathrm{P}_{2} \text { iff } \mathrm{x}_{1}(\mathrm{t}) \& \mathrm{x}_{2}(\mathrm{t}) \text { orthogonal }
\end{aligned}
$$

\rightarrow Shifting \& Time scaling won't effect power . Frequency content doesn't effect power.
\rightarrow if power $=\infty \rightarrow$ neither energy nor power signal
Power $=0 \Rightarrow$ Energy signal
Power $=K \Rightarrow$ power signal
\rightarrow Energy of power signal $=\infty$; Power of energy signal $=0$
\rightarrow Generally Periodic \& random signals \rightarrow Power signals
Aperiodic \& deterministic \rightarrow Energy signals

Precedence rule for scaling \& Shifting :

$$
\begin{aligned}
x(a t+b) \rightarrow & (1) \operatorname{shift} x(t) \text { by ' } b \text { ' } \rightarrow x(t+b) \\
& \text { (2) Scale } x(t+b) \text { by 'a' } \rightarrow x(a t+b) \\
x(a(t+b / a)) \rightarrow & (1) \text { scale } x(t) \text { by } a \rightarrow x(a t) \\
& (2) \operatorname{shift} x(a t) \text { by } b / a \rightarrow x(a(t+b / a)) .
\end{aligned}
$$

$\rightarrow \mathrm{x}(\mathrm{at}+\mathrm{b})=\mathrm{y}(\mathrm{t}) \Rightarrow \mathrm{x}(\mathrm{t})=\mathrm{y}\left(\frac{t-b}{a}\right)$

- Step response $\mathrm{s}(\mathrm{t})=\mathrm{h}(\mathrm{t})^{*} \mathrm{u}(\mathrm{t})=\int_{-\infty}^{\mathrm{t}} \mathrm{h}(\mathrm{t}) \mathrm{dt} \quad \mathrm{S}^{\prime}(\mathrm{t})=\mathrm{h}(\mathrm{t})$

$$
\mathrm{S}[\mathrm{n}]=\sum_{k=0}^{n} h[n] \quad \mathrm{h}[\mathrm{n}]=\mathrm{s}[\mathrm{n}]-\mathrm{s}[\mathrm{n}-1]
$$

- $\quad e^{-a t} u(t) * e^{-b t} u(t)=\frac{1}{b-a}\left[e^{-a t}-e^{-b t}\right] u(t)$.
- $\quad \mathrm{A}_{1} \operatorname{Rect}\left(\mathrm{t} / 2 \mathrm{~T}_{1}\right) * \mathrm{~A}_{2} \operatorname{Rect}\left(\mathrm{t} / 2 \mathrm{~T}_{2}\right)=2 \mathrm{~A}_{1} \mathrm{~A}_{2} \min \left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right) \operatorname{trapezoid}\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$
- $\quad \operatorname{Rect}(\mathrm{t} / 2 \mathrm{~T}) * \operatorname{Rect}(\mathrm{t} / 2 \mathrm{~T})=2 \mathrm{~T} \operatorname{tri}(\mathrm{t} / \mathrm{T})$

Hilbert Transform Pairs :

$\int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{x}^{2} / 2 \sigma^{2}} \mathrm{dx}=\sigma \sqrt{2 \pi} ; \int_{-\infty}^{\infty} \mathrm{x}^{2} \mathrm{e}^{-\mathrm{x}^{2} / 2 \sigma^{2}} \mathrm{dx}=\sigma^{3} \sqrt{2 \pi} \sigma>0$

Laplace Transform :-

$x(t)=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} X(s) e^{s t} d s$
$X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d s$
Initial \& Final value Theorems :
$\mathrm{x}(\mathrm{t})=0$ for $\mathrm{t}<0 ; \mathrm{x}(\mathrm{t})$ doesn't contain any impulses /higher order singularities @ $\mathrm{t}=0$ then

$$
\begin{aligned}
& x\left(0^{+}\right)=\lim _{s \rightarrow \infty} s X(s) \\
& x(\infty)=\lim _{s \rightarrow 0} s X(s)
\end{aligned}
$$

Properties of ROC :-

1. $\mathrm{X}(\mathrm{s}) \mathrm{ROC}$ has strips parallel to $\mathrm{j} \omega$ axis
2. For rational laplace transform ROC has no poles
3. $\mathrm{x}(\mathrm{t}) \rightarrow$ finite duration $\&$ absolutely integrable then ROC entire s-plane
4. $x(t) \rightarrow$ Right sided then ROC right side of right most pole excluding pole $s=\infty$
5. $x(t) \rightarrow$ left sided \quad ROC left side of left most pole excluding $s=-\infty$
6. $x(t) \rightarrow$ two sided \quad ROC is a strip
7. if $x(t)$ causal \quad ROC is right side of right most pole including $s=\infty$
8. if $x(t)$ stable ROC includes $j \omega$-axis

Z-transform :-

$$
\begin{aligned}
& x[n]=\frac{1}{2 \pi j} \oint x(z) z^{n-1} d z \\
& X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
\end{aligned}
$$

Initial Value theorem :
If $\mathrm{x}[\mathrm{n}]=0$ for $\mathrm{n}<0$ then $\mathrm{x}[0]=\lim _{z \rightarrow \infty} X(z)$

Final Value theorem :-

$\lim _{\rightarrow \infty} x[n]=\lim _{z \rightarrow 1}(z-1) \mathrm{X}(z)$

Properties of ROC :-

1.ROC is a ring or disc centered @ origin
2. DTFT of $x[n]$ converter if and only if ROC includes unit circle
3. ROC cannot contain any poles

Email : onlineies.com@gmail.com Site: www.onlineIES.com
Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies
4. if $x[n]$ is of finite duration then ROC is enter Z-plane except possibly 0 or ∞
5. if $\mathrm{x}[\mathrm{n}]$ right sided then ROC \rightarrow outside of outermost pole excluding $\mathrm{z}=0$
6. if $\mathrm{x}[\mathrm{n}]$ left sided then $\mathrm{ROC} \rightarrow$ inside of innermost pole including $\mathrm{z}=0$
7. if $x[n]$ \& sided then ROC is ring
8. ROC must be connected region
9.For causal LTI system ROC is outside of outer most pole including ∞
10.For Anti Causal system ROC is inside of inner most pole including ' 0 '
11. System said to be stable if ROC includes unit circle .
12. Stable \& Causal if all poles inside unit circle
13. Stable \& Anti causal if all poles outside unit circle.

Phase Delay \& Group Delay :-

When a modulated signal is fixed through a communication channel , there are two different delays to be considered.
(i) Phase delay:

Signal fixed @o/p lags the fixed signal by $\emptyset\left(\omega_{c}\right)$ phase

$$
\left.\tau_{\mathrm{P}}=-\frac{\phi\left(\omega_{\mathrm{c}}\right)}{\omega_{\mathrm{c}}} \text { where } \emptyset\left(\omega_{\mathrm{c}}\right)=\mathrm{KH} \mathrm{H} \omega\right)
$$

\downarrow
Frequency response of channel
Group delay $\quad \tau_{\mathrm{g}}=-\left.\frac{\mathrm{d} \phi(\omega)}{\mathrm{d} \omega}\right|_{\omega=\omega_{\mathrm{c}}}$ for narrow Band signal \downarrow
Signal delay / Envelope delay
Probability \& Random Process:-
$\rightarrow \mathrm{P}(\mathrm{A} / \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}$
\rightarrow Two events A \& B said to be mutually exclusive /Disjoint if $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0$
\rightarrow Two events A \& B said to be independent if $P(A / B)=P(A) \Rightarrow P(A \cap B)=P(A) P(B)$
$\rightarrow \mathrm{P}(\mathrm{Ai} / \mathrm{B})=\frac{\mathrm{P}(\mathrm{Ai} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{\mathrm{P}\left(\frac{\mathrm{B}}{\mathrm{A}}\right) \mathrm{P}(\mathrm{Ai})}{\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{P}\left(\frac{B}{A \mathrm{Ai}}\right) \mathrm{P}(\mathrm{Ai})}$
CDF :-
Cumulative Distribution function $\mathrm{F}_{\mathrm{x}}(\mathrm{x})=\mathrm{P}\{\mathrm{X} \leq x\}$

Properties of CDF :

- $\mathrm{F}_{\mathrm{x}}(\infty)=\mathrm{P}\{\mathrm{X} \leq \infty\}=1$
- $\mathrm{F}_{\mathrm{x}}(-\infty)=0$
- $\mathrm{F}_{\mathrm{x}}\left(\mathrm{x}_{1} \leq \mathrm{X} \leq \mathrm{x}_{2}\right)=\mathrm{F}_{\mathrm{x}}\left(\mathrm{x}_{2}\right)-\mathrm{F}_{\mathrm{x}}\left(\mathrm{x}_{1}\right)$
- Its Non decreasing function
- $\mathrm{P}\{\mathrm{X}>\mathrm{x}\}=1-\mathrm{P}\{\mathrm{X} \leq \mathrm{x}\}=1-\mathrm{F}_{\mathrm{x}}(\mathrm{x})$

PDF :-

$$
\operatorname{Pdf}=f_{x}(x)=\frac{d}{d x} F_{x}(x)
$$

$$
\operatorname{Pmf}=f_{x}(x)=\sum_{i=-\infty}^{\infty} P\left\{X=x_{i}\right\} \delta\left(x=x_{i}\right)
$$

Properties:-

- $\mathrm{f}_{\mathrm{x}}(\mathrm{x}) \geq 0$
- $\quad \mathrm{F}_{\mathrm{x}}(\mathrm{x})=\mathrm{f}_{\mathrm{X}}(\mathrm{x}) * \mathrm{u}(\mathrm{x})=\int_{-\infty}^{\mathrm{x}} \mathrm{f}_{\mathrm{x}}(\mathrm{x}) \mathrm{dx}$
- $F_{x}(\infty)=\int_{-\infty}^{\infty} f_{x}(x) d x=1$ so, area under PDF $=1$
- $P\left\{x_{1}<X \leq x_{2}\right\}=\int_{x_{1}}^{\mathrm{x}_{2}} \mathrm{f}_{\mathrm{x}}(\mathrm{x}) \mathrm{dx}$

Mean \& Variance :-

Mean $\mu_{x}=E\{x\}=\int_{-\infty}^{\infty} x f_{x}(x) d x$
Variance $\sigma^{2}=\mathrm{E}\left\{\left(\mathrm{X}-\mu_{\mathrm{x}}\right)^{2}\right\}=\mathrm{E}\left\{\mathrm{x}^{2}\right\}-\mu_{\mathrm{x}}^{2}$
$\rightarrow \mathrm{E}\{\mathrm{g}(\mathrm{x})\}=\int_{-\infty}^{\infty} \mathrm{g}(\mathrm{x}) \mathrm{f}_{\mathrm{x}}(\mathrm{x}) \mathrm{dx}$

Uniform Random Variables :

Random variable $\mathrm{X} \sim \mathrm{u}(\mathrm{a}, \mathrm{b})$ if its pdf of form as shown below
$\mathrm{f}_{\mathrm{X}}(\mathrm{x})=\left\{\begin{array}{c}\frac{1}{b-a} ; a<x \leq b \\ 0, \text { else }\end{array}\right.$
$\mathrm{F}_{\mathrm{x}}(\mathrm{x})=\left\{\begin{array}{c}1 ; x>b \\ \frac{x-a}{b-a} ; a<x<b \\ 0 ; \text { else }\end{array}\right.$
Mean $=\frac{a+b}{2}$
Variance $=(b-a)^{2} / 12 \quad E\left\{x^{2}\right\}=\frac{a^{2}+a b+b^{2}}{3}$

Gaussian Random Variable :-

$$
\mathrm{f}_{\mathrm{x}}(\mathrm{x})=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \mathrm{e}^{-(\mathrm{x}-\mu)^{2} / 2 \sigma^{2}}
$$

$$
\mathrm{X} \sim \mathrm{~N}\left(\mu_{1} \sigma^{2}\right)
$$

Mean $=\int_{-\infty}^{\infty} x \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x=\mu$

Variance $=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{\infty} x^{2} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x=\sigma^{2}$

Exponential Distribution :-

$$
\begin{gathered}
f_{x}(x)=\lambda e^{-\lambda x} u(x) \\
F_{x}(x)=\left(1-e^{-\lambda x}\right) u(x)
\end{gathered}
$$

Laplacian Distribution :-

$\mathrm{f}_{\mathrm{x}}(\mathrm{x})=\frac{\lambda}{2} \mathrm{e}^{-\lambda|\mathrm{x}|}$

Multiple Random Variables :-

- $\mathrm{F}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y})=\mathrm{P}\{\mathrm{X} \leq \mathrm{x}, \mathrm{Y} \leq \mathrm{y}\}$
- $\mathrm{F}_{\mathrm{XY}}(\mathrm{x}, \infty)=\mathrm{P}\{\mathrm{X} \leq \mathrm{x}\}=\mathrm{F}_{\mathrm{x}}(\mathrm{x}) ; \mathrm{F}_{\mathrm{xy}}(\infty, \mathrm{y})=\mathrm{P}\{\mathrm{Y}<\mathrm{y}\}=\mathrm{F}_{\mathrm{Y}}(\mathrm{y})$
- $\mathrm{F}_{\mathrm{xy}}(-\infty, \mathrm{y})=\mathrm{F}_{\mathrm{xy}}(\mathrm{x},-\infty)=\mathrm{F}_{\mathrm{xy}}(-\infty,-\infty)=0$
- $f_{x}(x)=\int_{-\infty}^{\infty} f_{x y}(x, y) d y ; f_{Y}(y)=\int_{-\infty}^{\infty} f_{x y}(x, y) d x$
- $F_{Y / X}\left(\frac{Y}{X} \leq x\right)=\frac{P\{Y \leq y, X \leq x\}}{P\{X \leq x\}}=\frac{F_{X Y}(x, y)}{F_{X}(x)}$
- $f_{Y / X}(y / x)=\frac{f_{X Y}(x, y)}{f_{X}(x)}$

Independence :-

- $\quad X \& Y$ are said to be independent if $F_{X Y}(x, y)=F_{X}(x) F_{Y}(y)$

$$
\Rightarrow f_{X Y}(x, y)=f_{X}(x) \cdot f_{X}(y) \quad P\{X \leq x, Y \leq y\}=P\{X \leq x\} . P\{Y \leq y\}
$$

Correlation:

$\operatorname{Corr}\{X Y\}=E\{X Y\}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{x y}(x, y) . x y . d x d y$
If $E\{X Y\}=0$ then $X \& Y$ are orthogonal .

Uncorrelated :-

Covariance $=\operatorname{Cov}\{X Y\}=E\left\{\left(X-\mu_{\mathrm{x}}\right)\left(\mathrm{Y}-\mu_{\mathrm{y}}\right\}\right.$

$$
=E\{x y\}-E\{x\} E\{y\} .
$$

If covariance $=0 \Rightarrow \mathrm{E}\{\mathrm{xy}\}=\mathrm{E}\{\mathrm{x}\} \mathrm{E}\{\mathrm{y}\}$

- Independence \rightarrow uncorrelated but converse is not true.

Random Process:-

Take 2 random process $\mathrm{X}(\mathrm{t}) \& \mathrm{Y}(\mathrm{t})$ and sampled $@ \mathrm{t}_{1}, \mathrm{t}_{2}$
$\mathrm{X}\left(\mathrm{t}_{1}\right), \mathrm{X}\left(\mathrm{t}_{2}\right), \mathrm{Y}\left(\mathrm{t}_{1}\right), \mathrm{Y}\left(\mathrm{t}_{2}\right) \rightarrow$ random variables
\rightarrow Auto correlation $\mathrm{R}_{\mathrm{x}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=\mathrm{E}\left\{\mathrm{X}\left(\mathrm{t}_{1}\right) \mathrm{X}\left(\mathrm{t}_{2}\right)\right\}$
\rightarrow Auto covariance $\mathrm{C}_{\mathrm{x}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=\mathrm{E}\left\{\mathrm{X}\left(\mathrm{t}_{1}\right)-\mu_{\mathrm{x}}\left(\mathrm{t}_{1}\right)\right)\left(\mathrm{X}\left(\mathrm{t}_{2}\right)-\mu_{\mathrm{x}}\left(\mathrm{t}_{2}\right)\right\}=\mathrm{R}_{\mathrm{x}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)-\mu_{\mathrm{x}}\left(\mathrm{t}_{1}\right) \mu_{\mathrm{x}}\left(\mathrm{t}_{2}\right)$
\rightarrow cross correlation $\mathrm{R}_{\mathrm{xy}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=\mathrm{E}\left\{\mathrm{X}\left(\mathrm{t}_{1}\right) \mathrm{Y}\left(\mathrm{t}_{2}\right)\right\}$
\rightarrow cross covariance $\mathrm{C}_{\mathrm{xy}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=\mathrm{E}\left\{\mathrm{X}\left(\mathrm{t}_{1}\right)-\mu_{\mathrm{x}}\left(\mathrm{t}_{1}\right)\right)\left(\mathrm{Y}\left(\mathrm{t}_{2}\right)-\mu_{\mathrm{y}}\left(\mathrm{t}_{2}\right)\right\}=\mathrm{R}_{\mathrm{xy}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)-\mu_{\mathrm{x}}\left(\mathrm{t}_{1}\right) \mu_{\mathrm{y}}\left(\mathrm{t}_{2}\right)$
$\rightarrow \mathrm{C}_{\mathrm{XY}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=0 \Rightarrow \mathrm{R}_{\mathrm{xy}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=\mu_{\mathrm{x}}\left(\mathrm{t}_{1}\right) \mu_{\mathrm{y}}\left(\mathrm{t}_{2}\right) \rightarrow$ Un correlated
$\rightarrow \mathrm{R}_{\mathrm{XY}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=0 \Rightarrow$ Orthogonal cross correlation $=0$
$\rightarrow \mathrm{F}_{\mathrm{XY}}\left(\mathrm{x}, \mathrm{y}!\mathrm{t}_{1}, \mathrm{t}_{2}\right)=\mathrm{F}_{\mathrm{x}}\left(\mathrm{x}!\mathrm{t}_{1}\right) \mathrm{F}_{\mathrm{y}}\left(\mathrm{y}!\mathrm{t}_{2}\right) \rightarrow$ independent

Properties of Auto correlation :-

- $\mathrm{R}_{\mathrm{x}}(0)=\mathrm{E}\left\{\mathrm{x}^{2}\right\}$
- $\mathrm{R}_{\mathrm{x}}(\tau)=\mathrm{R}_{\mathrm{x}}(-\tau) \rightarrow$ even
- $\left|R_{X}(\tau)\right| \leq R_{x}(0)$

Cross Correlation

- $\mathrm{R}_{\mathrm{xy}}(\tau)=\mathrm{R}_{\mathrm{yx}}(-\tau)$
- $\mathrm{R}_{\mathrm{xy}}^{2}(\tau) \leq \mathrm{R}_{\mathrm{x}}(0) . \mathrm{R}_{\mathrm{y}}(0)$
- $2\left|R_{x y}(\tau)\right| \leq R_{x}(0)+R_{y}(0)$

Power spectral Density :-

- P.S.D $S_{x}(j \omega)=\int_{-\infty}^{\infty} R_{x}(\tau) e^{-j \omega \tau} d \tau$

$$
\mathrm{R}_{\mathrm{x}}(\tau)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{x}(\mathrm{j} \omega) \mathrm{e}^{\mathrm{j} \omega \tau} \mathrm{~d} \omega
$$

- $\mathrm{S}_{\mathrm{y}}(\mathrm{j} \omega)=\mathrm{S}_{\mathrm{x}}(\mathrm{j} \omega)|\mathrm{H}(\mathrm{j} \omega)|^{2}$
- Power $=\mathrm{R}_{\mathrm{x}}(0)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{x}(\mathrm{j} \omega) \mathrm{d} \omega$
- $\mathrm{R}_{\mathrm{x}}(\tau)=\mathrm{k} \delta(\tau) \rightarrow$ white process

Properties :

- $\mathrm{S}_{\mathrm{x}}(\mathrm{j} \omega)$ even
- $\mathrm{S}_{\mathrm{x}}(\mathrm{j} \omega) \geq 0$

Control Systems

Time Response of $2^{\text {nd }}$ order system :-
Step i/P:

- $\mathrm{C}(\mathrm{t})=1-\frac{\mathrm{e}^{-\zeta \omega_{\mathrm{n}} \mathrm{t}}}{\sqrt{1-\zeta^{2}}}\left(\sin \omega_{\mathrm{n}} \sqrt{1-\zeta^{2}} \mathrm{t} \pm \tan ^{-1}\left(\frac{\sqrt{1-\zeta^{2}}}{\zeta}\right)\right)$
- $\mathrm{e}(\mathrm{t})=\frac{\mathrm{e}^{-\zeta \omega_{\mathrm{n}} \mathrm{t}}}{\sqrt{1-\zeta^{2}}}\left(\sin \omega_{d} t \pm \tan ^{-1}\left(\frac{\sqrt{1-\zeta^{2}}}{\zeta}\right)\right)$
- $\mathrm{e}_{\mathrm{ss}}=\lim _{t \rightarrow \infty} \frac{\mathrm{e}^{-\zeta \omega_{\mathrm{n}} \mathrm{t}}}{\sqrt{1-\zeta^{2}}}\left(\sin \omega_{d} t \pm \tan ^{-1}\left(\frac{\sqrt{1-\zeta^{2}}}{\zeta}\right)\right)$
$\rightarrow \zeta \rightarrow$ Damping ratio ; $\zeta \omega_{\mathrm{n}} \rightarrow$ Damping factor
$\zeta<1$ (Under damped) :-
$C(\mathrm{t})=1-=\frac{\mathrm{e}^{-\zeta \omega_{\mathrm{n}} \mathrm{t}}}{\sqrt{1-\zeta^{2}}} \operatorname{Sin}\left(\omega_{d} t \pm \tan ^{-1}\left(\frac{\sqrt{1-\zeta^{2}}}{\zeta}\right)\right)$
$\zeta=0$ (un damped) :-
$\mathrm{c}(\mathrm{t})=1-\cos \omega_{\mathrm{n}} \mathrm{t}$
$\zeta=1$ (Critically damped) :-
$C(t)=1-e^{-\omega_{n}}{ }^{t}\left(1+\omega_{n} t\right)$
$\zeta>1$ (over damped) :-

No. 1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram \& Jayanagar, Bangalore. Ph: o 99003 99699/ o 9741900225 / 080-32552008

Email : onlineies.com@gmail.com Site: www.onlineIES.com Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies
$C(t)=1-\frac{e^{-\left(\zeta-\sqrt{\zeta^{2}-1}\right) \omega_{\mathrm{n}} \mathrm{t}}}{2 \sqrt{\zeta^{2}-1}\left(\zeta-\sqrt{\zeta^{2}-\mathbf{1}}\right)}$
$\mathrm{T}=\frac{1}{\left(\zeta-\sqrt{\zeta^{2}-1}\right) \omega_{\mathrm{n}}}$
$\mathrm{T}_{\text {undamped }}>\mathrm{T}_{\text {overdamped }}>\mathrm{T}_{\text {underdamped }}>\mathrm{T}_{\text {criticaldamp }}$

Time Domain Specifications :-

- Rise time $\mathrm{t}_{\mathrm{r}}=\frac{\pi-\varnothing}{\omega_{\mathrm{n}} \sqrt{1-\zeta^{2}}} \quad \emptyset=\tan ^{-1}\left(\frac{\sqrt{1-\zeta^{2}}}{\zeta}\right)$
- Peak time $\mathrm{t}_{\mathrm{p}}=\frac{\mathrm{n} \pi}{\omega_{\mathrm{d}}}$
- Max over shoot $\% M_{p}=e^{-\zeta \omega_{n} / \sqrt{1-\zeta^{2}}} \times 100$
- Settling time $\mathrm{t}_{\mathrm{s}}=3 \mathrm{~T} \quad 5 \%$ tolerance

$$
=4 \mathrm{~T} \quad 2 \% \text { tolerance }
$$

- Delay time $\mathrm{t}_{\mathrm{d}}=\frac{1+0.7 \zeta}{\omega_{\mathrm{n}}}$
- Damping factor ${ }^{2} \zeta^{2}=\frac{\left(\ln M_{p}\right)^{2}}{\pi^{2}+\left(\ln M_{p}\right)^{2}}$
- Time period of oscillations $\mathrm{T}=\frac{2 \pi}{\omega_{\mathrm{d}}}$
- No of oscillations $=\frac{\mathrm{t}_{\mathrm{s}}}{2 \pi / \omega_{\mathrm{d}}}=\frac{\mathrm{t}_{\mathrm{s}} \times \omega_{\mathrm{d}}}{2 \pi}$
- $\mathrm{t}_{\mathrm{r}} \approx 1.5 \mathrm{t}_{\mathrm{d}} \quad \mathrm{t}_{\mathrm{r}}=2.2 \mathrm{~T}$
- Resonant peak $\left.\mathrm{M}_{\mathrm{r}}=\frac{1}{2 \zeta \sqrt{1-\zeta^{2}}} ; \omega_{\mathrm{r}}=\omega_{\mathrm{n}} \sqrt{1-2 \zeta^{2}} \quad \frac{\omega_{n}>\omega_{r}}{\omega_{b}>\omega_{n}}\right] \omega_{\mathrm{r}}<\omega_{\mathrm{n}}<\omega_{\mathrm{b}}$
- Bandwidth $\omega_{\mathrm{b}}=\omega_{\mathrm{n}}\left(1-2 \zeta^{2}+\sqrt{4 \zeta^{4}-4 \zeta^{2}+2}\right)^{1 / 2}$

Static error coefficients :-

- Step i/p: $\quad \mathrm{e}_{\mathrm{ss}}=\lim _{\mathrm{t} \rightarrow \infty} e(t)=\lim _{s \rightarrow 0} s E(s)=\lim _{s \rightarrow 0} \frac{S R(s)}{1+G H}$

$$
\mathrm{e}_{\mathrm{ss}}=\frac{1}{1+\mathrm{K}_{\mathrm{p}}}(\text { positional error }) \quad \mathrm{K}_{\mathrm{p}}=\lim _{s \rightarrow 0} G(s) H(s)
$$

- Ramp i/p (t): $\mathrm{e}_{\mathrm{ss}}=\frac{1}{\mathrm{~K}_{\mathrm{v}}} \quad \mathrm{K}_{\mathrm{v}}=\lim _{s \rightarrow 0} S G(s) H(s)$
- Parabolic $\mathrm{i} / \mathrm{p}\left(\mathrm{t}^{2} / 2\right): \mathrm{e}_{\mathrm{ss}}=1 / \mathrm{K}_{\mathrm{a}} \quad \mathrm{K}_{\mathrm{a}}=\lim _{s \rightarrow 0} \mathrm{~s}^{2} G(s) H(s)$

> Type $<\mathrm{i} / \mathrm{p} \rightarrow \mathrm{e}_{\text {ss }}=\infty$
> Type $=\mathrm{i} / \mathrm{p} \rightarrow \mathrm{e}_{\text {ss }}$ finite
> Type $>\mathrm{i} / \mathrm{p} \rightarrow \mathrm{e}_{\text {ss }}=0$

- Sensitivity $S=\frac{\partial \mathrm{A} / \mathrm{A}}{\partial \mathrm{K} / \mathrm{K}}$ sensitivity of A w.r.to K .
- Sensitivity of over all T/F w.r.t forward path T/F G(s) :

No. 1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram \& Jayanagar, Bangalore. Ph: o 99003 99699/ o 9741900225 / 080-32552008

Email : onlineies.com@gmail.com Site: www.onlineIES.com
Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies

Open loop: $\quad \mathrm{S}=1$
Closed loop : $\quad \mathrm{S}=\frac{1}{1+\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})}$

- Minimum 'S' value preferable
- Sensitivity of over all T/F w.r.t feedback T/F $H(s): S=\frac{G(s) H(s)}{1+G(s) H(s)}$

Stability
 RH Criterion :-

- Take characteristic equation $1+\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=0$
- All coefficients should have same sign
- There should not be missing 's' term. Term missed means presence of at least one + ve real part root
- If char. Equation contains either only odd/even terms indicates roots have no real part \& posses only imag parts there fore sustained oscillations in response.
- Row of all zeroes occur if
(a) Equation has at least one pair of real roots with equal image but opposite sign
(b) has one or more pair of imaginary roots
(c) has pair of complex conjugate roots forming symmetry about origin.

Electromagnetic Fields

Vector Calculus:-

$\rightarrow \mathrm{A} .(\mathrm{B} \times \mathrm{C})=\mathrm{C} .(\mathrm{A} \times \mathrm{B})=\mathrm{B} .(\mathrm{C} \times \mathrm{A})$
$\rightarrow \mathrm{A} \times(\mathrm{B} \times \mathrm{C})=\mathrm{B}(\mathrm{A} . \mathrm{C})-\mathrm{C}(\mathrm{A} . \mathrm{B}) \rightarrow \mathrm{Bac}-\mathrm{Cab}$ rule
\rightarrow Scalar component of A along B is $A_{B}=A \operatorname{Cos} \theta_{A B}=A . a_{B}=\frac{(A \cdot B)}{|B|}$
\rightarrow Vector component of A along B is $\bar{A}_{B}=A \operatorname{Cos} \theta_{A B} \cdot a_{B}=\frac{(A . B) B}{|B|^{2}}$

Laplacian of scalars :-

- $\oint \mathrm{A} . \mathrm{ds}=v^{\int(\nabla . A) d v} \rightarrow$ Divergence theorem
- $\mathrm{L}^{\oint \mathrm{A} . \mathrm{dI}}=s^{\int(\nabla \times A) d s} \rightarrow$ Stokes theorem
- $\nabla^{2} \mathrm{~A}=\nabla(\nabla . \mathrm{A})-\nabla \times \nabla \times \mathrm{A}$
- $\nabla . A=0 \rightarrow$ solenoidal / Divergence loss ; $\nabla . A>0 \rightarrow$ source ; $\nabla . A<0 \Rightarrow \operatorname{sink}$
- $\nabla \times \mathrm{A}=0 \rightarrow$ irrotational / conservative/potential.
- $\nabla^{2} \mathrm{~A}=0 \rightarrow$ Harmonic .

Electrostatics:-

- Force on charge ' Q ' located @ $\mathrm{r} \quad \mathrm{F}=\frac{\mathrm{Q}}{4 \pi \varepsilon_{0}} \sum_{\mathrm{k}=1}^{\mathrm{N}} \frac{\mathrm{Q}_{\mathrm{k}}\left(\mathrm{r}-\mathrm{r}_{\mathrm{k}}\right)}{\left|\mathrm{r}-\mathrm{r}_{\mathrm{k}}\right|^{3}} ; \mathrm{F}_{12}=\frac{\mathrm{Q}_{1} \mathrm{Q}_{2}}{4 \pi \varepsilon_{0} \mathrm{R}^{3}} . \overline{\mathrm{R}}_{12}$
- $\mathrm{E} @$ point ' r ' due to charge located @ $r^{\prime} s \quad \bar{E}=\frac{1}{4 \pi \varepsilon_{0}} \sum_{\mathrm{K}=1}^{\mathrm{N}} \frac{\left(\mathrm{r}-\mathrm{r}_{\mathrm{k}}\right)}{\mathrm{r}-\mathrm{r}_{\mathrm{k}}{ }^{3}} \mathrm{Q}_{\mathrm{k}}$
- E due to ∞ line charge @ distance ' ρ ' $\mathrm{E}=\frac{\rho_{\mathrm{L}}}{2 \pi \varepsilon_{0} \rho} \cdot \mathrm{a}_{\rho}$ (depends on distance)
- E due to surface charge ρ_{s} is $E=\frac{\rho_{s}}{2 \varepsilon_{0}} a_{n} . a_{n} \rightarrow$ unit normal to surface (independent of distance)
- For parallel plate capacitor @ point ' P ' $\mathrm{b} / \mathrm{w} 2$ plates of 2 opposite charges is

[^0]$$
\mathrm{E}=\frac{\rho_{\mathrm{s}}}{2 \varepsilon_{0}} \mathrm{a}_{\mathrm{n}}-\left(\frac{\rho_{\mathrm{s}}}{2 \varepsilon_{0}}\right)\left(-a_{n}\right)
$$

- ' E ' due to volume charge $E=\frac{Q}{4 \pi \varepsilon_{0} R^{2}} a_{r}$.
\rightarrow Electric flux density $\mathrm{D}=\varepsilon_{0} \mathrm{E} \quad \mathrm{D} \rightarrow$ independent of medium
Flux $\Psi=s^{\int D . d s}$

Gauss Law :-

\rightarrow Total flux coming out of any closed surface is equal to total charge enclosed by surface .
$\Psi=Q_{\text {enclosed }} \Rightarrow \int D . d s=Q_{\text {enclosed }}=\int \rho_{\mathrm{v}} \cdot \mathrm{dv}$

$$
\rho_{\mathrm{v}}=\nabla . \mathrm{D}
$$

\rightarrow Electric potential $V_{A B}=\frac{w}{Q}=-\int_{A}^{B}$ E.dI (independent of path)

$$
\left.V_{A B}=-\int_{A}^{B} \frac{Q}{4 \pi \varepsilon_{0} r^{2}} a_{r} \cdot d r a_{r}=V_{B}-V_{A} \text { (for point charge }\right)
$$

- Potential @ any point (distance = r), where Q is located same where, whose position is vector @ r^{\prime}
$\mathrm{V}=\frac{\mathrm{Q}}{4 \pi \varepsilon_{0}\left|\mathrm{r}-\mathrm{r}^{\prime}\right|}$
$\rightarrow \mathrm{V}(\mathrm{r})=\frac{\mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{r}}+\mathrm{C}$. [if ' C ' taken as ref potential]
$\rightarrow \nabla \times \mathrm{E}=0, \mathrm{E}=-\nabla \mathrm{V}$
\rightarrow For monopole $\mathrm{E} \propto \frac{1}{\mathrm{r}^{2}}$; Dipole $\mathrm{E} \propto \frac{1}{\mathrm{r}^{3}}$.

$$
\mathrm{V} \propto \frac{1}{\mathrm{r}} ; \quad \mathrm{V} \propto \frac{1}{\mathrm{r}^{2}}
$$

- Electric lines of force/ flux /direction of E always normal to equipotential lines .
- Energy Density $W_{E}=\frac{1}{2} \sum_{\mathrm{k}=1}^{\mathrm{N}} \mathrm{Q}_{\mathrm{k}} V_{\mathrm{k}}=\frac{1}{2} \int D . E d v=\frac{1}{2} \int \varepsilon_{0} \mathrm{E}^{2} \mathrm{dv}$
- Continuity Equation $\nabla . J=-\frac{\partial \rho_{V}}{\partial \mathrm{t}}$.
- $\rho_{\mathrm{v}}=\rho_{\mathrm{v}_{0}} \mathrm{e}^{-\mathrm{t} / \mathrm{T}_{\mathrm{r}}}$ where $\mathrm{T}_{\mathrm{r}}=$ Relaxation/regeneration time $=\varepsilon / \sigma$ (less for good conductor)

Boundary Conditions:-

$$
\mathrm{E}_{\mathrm{t}_{1}}=\mathrm{E}_{\mathrm{t}_{2}}
$$

- Tangential component of ' E ' are continuous across dielectric-dielectric Boundary .
- Tangential Components of ' D ' are dis continues across Boundary .
- $\mathrm{E}_{\mathrm{t}_{1}}=\mathrm{E}_{\mathrm{t}_{2}} ; \frac{\mathrm{D}_{1 \mathrm{t}}}{\mathrm{D}_{2 \mathrm{t}}}=\varepsilon_{1} / \varepsilon_{2}$.
- Normal components are of ' D ' are continues, where as ' E ' are dis continues.
- $\mathrm{D}_{1 \mathrm{n}}-\mathrm{D}_{2 \mathrm{n}}=\rho_{\mathrm{s}} ; \mathrm{E}_{1 \mathrm{n}}=\frac{\varepsilon_{2}}{\varepsilon_{1}} \mathrm{E}_{2 \mathrm{n}} ; \frac{\tan \theta_{1}}{\tan \theta_{2}}=\frac{\varepsilon_{1}}{\varepsilon_{2}}=\frac{\varepsilon_{\mathrm{r} 1}}{\varepsilon_{\mathrm{r} 2}}$
- $H_{1 \mathrm{t}}=\mathrm{H}_{2 \mathrm{t}} \quad \mathrm{B}_{12}=\frac{\mu_{1}}{\mu_{2}} \mathrm{~B}_{2} \mathrm{t}$

$$
\mathrm{B}_{1 \mathrm{n}}=\mathrm{B}_{2 \mathrm{n}} \quad \mathrm{H}_{1 \mathrm{n}}=\frac{\mu_{2}}{\mu_{1}} \mathrm{H}_{2 \mathrm{n}}
$$

Maxwell's Equations :-

\rightarrow faraday law $V_{\text {emf }}=\oint$ E. $d I=-\frac{d}{d t} \int$ B. $d s$
\rightarrow Transformer emf $=\oint \mathrm{E} \cdot \mathrm{dI}=-\int \frac{\partial \mathrm{B}}{\partial \mathrm{t}} \mathrm{ds} \Rightarrow \nabla \times \mathrm{E}=-\frac{\partial \mathrm{B}}{\partial \mathrm{t}}$

[^1]S
\rightarrow Motional emf $=\nabla \times \mathrm{E}_{\mathrm{m}}=\nabla \times(\mu \times \mathrm{B})$.
$\rightarrow \nabla \times \mathrm{H}=\mathrm{J}+\frac{\partial \mathrm{D}}{\partial \mathrm{t}}$

Electromagnetic wave propagation :-

- $\quad \nabla \times \mathrm{H}=\mathrm{J}+\dot{D}$
$\mathrm{D}=\varepsilon \mathrm{E}$
$\nabla^{2} E=\mu \varepsilon \ddot{E}$
$\nabla \times \mathrm{E}=-\dot{B}$
$B=\mu H$
$\nabla^{2} \mathrm{H}=\mu \varepsilon \ddot{H}$
$\nabla . \mathrm{D}=\rho_{\mathrm{v}}$
$\mathrm{J}=\sigma \mathrm{E}$
$\nabla . B=0$
- $\frac{\mathrm{E}_{\mathrm{y}}}{\mathrm{H}_{\mathrm{z}}}=-\frac{\mathrm{E}_{\mathrm{z}}}{\mathrm{H}_{\mathrm{y}}}=\sqrt{\mu / \varepsilon} ; \mathrm{E} \cdot \mathrm{H}=0 \quad \mathrm{E} \perp \mathrm{H}$ in UPW

For loss less medium $\quad \nabla^{2} E-\rho^{2} E=0 \quad \rho=\sqrt{j \omega \mu(\sigma+j \omega \epsilon)}=\alpha+j \beta$.
$\alpha=\omega \sqrt{\frac{\mu \epsilon}{2}\left(\sqrt{1+\left(\frac{\sigma}{\omega \epsilon}\right)^{2}}-1\right)}$
$\beta=\omega \sqrt{\frac{\mu \epsilon}{2}\left(\sqrt{1+\left(\frac{\sigma}{\omega \epsilon}\right)^{2}}+1\right)}$

- $\mathrm{E}(\mathrm{z}, \mathrm{t})=\mathrm{E}_{0} \mathrm{e}^{-\alpha \mathrm{z}} \cos (\omega \mathrm{t}-\beta \mathrm{z}) ; \mathrm{H}_{0}=\mathrm{E}_{0} / \eta$.
- $\eta=\sqrt{\frac{j \omega \mu}{\sigma+j \omega \epsilon}}|\eta|<\theta_{\eta}$
- $|\eta|=\frac{\sqrt{\mu / \varepsilon}}{\left[1+\left(\frac{\sigma}{\omega \epsilon}\right)^{2}\right]^{1 / 4}} \quad \tan 2 \theta_{\eta}=\sigma / \omega \varepsilon$.
- $\eta=\alpha+\mathrm{j} \beta \quad \alpha \rightarrow$ attenuation constant \rightarrow Neper $/ \mathrm{m} . \quad\left|\mathrm{N}_{\mathrm{p}}\right|=20 \log _{10} e=8.686 \mathrm{~dB}$
- For loss less medium $\sigma=0 ; \alpha=0$.
- $\beta \rightarrow$ phase shift/length ; $\mu=\omega / \beta ; \lambda=2 \pi / \beta$.
- $\frac{\mathrm{J}_{s}}{\mathrm{~J}_{\mathrm{d}}}=\left|\frac{\sigma E}{j \omega \epsilon \mathrm{E}}\right|=\sigma / \omega \epsilon=\tan \theta \rightarrow$ loss tanjent $\theta=2 \theta_{\eta}$
- If $\tan \theta$ is very small $(\sigma \ll \omega \epsilon) \rightarrow$ good (lossless) dielectric
- If $\tan \theta$ is very large $(\sigma \gg \omega \epsilon) \rightarrow$ good conductor
- Complex permittivity $\epsilon_{\mathrm{C}}=\epsilon\left(1-\frac{j \sigma}{\omega \epsilon}\right)=\varepsilon^{\prime}-\mathrm{j} \varepsilon^{\prime \prime}$.
- $\operatorname{Tan} \theta=\frac{\varepsilon^{\prime \prime}}{\varepsilon^{\prime}}=\frac{\sigma}{\omega \epsilon}$.

Plane wave in loss less dielectric :- $(\sigma \approx 0)$

- $\alpha=0 ; \beta=\omega \sqrt{\mu \epsilon} ; \omega=\frac{1}{\sqrt{\mu \epsilon}} ; \quad \lambda=2 \pi / \beta ; \eta=\sqrt{\mu_{\mathrm{r}} / \varepsilon_{\mathrm{r}}}<0$.
- $\quad \mathrm{E} \& \mathrm{H}$ are in phase in lossless dielectric

Free space :- $\left(\sigma=0, \mu=\mu_{0}, \varepsilon=\varepsilon_{0}\right)$
15 No. 1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram \& Jayanagar, Bangalore. Ph: o 99003 99699/ o 9741900225 / 080-32552008

Email : onlineies.com@gmail.com Site: www.onlineIES.com
Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies

- $\alpha=0, \beta=\omega \sqrt{\mu_{0} \varepsilon_{0}} ; \quad u=1 / \sqrt{\mu_{0} \varepsilon_{0}}, \lambda=2 \pi / \beta ; \eta=\sqrt{\mu_{0} / \varepsilon_{0}}<0=120 \pi \angle 0$

Here also E \& H in phase .

Good Conductor :-

$$
\sigma \gg \omega \epsilon \quad \sigma / \omega \epsilon \rightarrow \infty \Rightarrow \sigma=\infty \quad \varepsilon=\varepsilon_{0} ; \mu=\mu_{0} \mu_{\mathrm{r}}
$$

- $\alpha=\beta=\sqrt{\pi f \mu \sigma} ; u=\sqrt{2 \omega / \mu \sigma} ; \lambda=2 \pi / \beta ; \eta=\sqrt{\frac{W \mu}{\sigma}} \angle 45^{0}$
- Skin depth $\delta=1 / \alpha$
- $\eta=\frac{1}{\sigma \delta} \sqrt{2} \mathrm{e}^{\mathrm{j} \pi / 4}=\frac{1+\mathrm{j}}{\sigma \delta}$
- Skin resistance $\mathrm{R}_{\mathrm{s}}=\frac{1}{\sigma \delta}=\sqrt{\frac{\pi \mathrm{f} \mathrm{\mu}}{\sigma}}$
- $\mathrm{R}_{\mathrm{ac}}=\frac{\mathrm{R}_{\mathrm{s}} .1}{\mathrm{w}}$
- $\mathrm{R}_{\mathrm{dc}}=\frac{1}{\sigma \mathrm{~s}}$.

Poynting Vector :-

- $\int(E \times H) d s=-\frac{\partial}{d t} \int \frac{1}{2}\left[\varepsilon \mathrm{E}^{2}+\mu \mathrm{H}^{2}\right] \mathrm{dv}-\int \sigma \mathrm{E}^{2} \mathrm{dv}$ S v
- $\quad \delta_{\text {ave }}(\mathrm{z})=\frac{1}{2} \frac{\mathrm{E}_{0}^{2}}{|\eta|} \mathrm{e}^{-2 \alpha \mathrm{z}} \cos \theta_{\eta} \mathrm{a}_{\mathrm{z}}$
- Total time avge power crossing given area $P_{\text {avge }}=\int P_{\text {ave }}(s) d s$

Direction of propagation :- $\left(a_{k}\right)$

$$
\mathrm{a}_{\mathrm{k}} \times \mathrm{a}_{\mathrm{E}}=\mathrm{a}_{\mathrm{H}}
$$

$\mathrm{a}_{\mathrm{E}} \times \mathrm{a}_{\mathrm{H}}=\mathrm{a}_{\mathrm{k}}$
\rightarrow Both E \& H are normal to direction of propagation
\rightarrow Means they form EM wave that has no E or H component along direction of propagation .

Reflection of plane wave :-

(a) Normal incidence

Reflection coefficient $\Gamma=\frac{E_{\text {ro }}}{E_{i 0}}=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}$
$T_{x n}$ coefficient $T=\frac{E_{t 0}}{E_{i 0}}=\frac{2 \eta_{2}}{\eta_{2}+\eta_{1}}$

Medium-I Dielectric , Medium-2 Conductor :-

$\eta_{2}>\eta_{1}$:-

$\Gamma>0$, there is a standing wave in medium \& $\mathrm{T}_{\mathrm{xed}}$ wave in medium ' 2 '.
Max values of $\left|E_{1}\right|$ occurs

$$
\begin{aligned}
& Z_{\max }=-n \pi / \beta_{1}=\frac{-n \lambda_{1}}{2} ; n=0,1,2 \ldots \\
& Z_{\text {min }}=\frac{-(2 n+1) \pi}{2 \beta_{1}}=\frac{-(2 n+1) \lambda_{1}}{4}
\end{aligned}
$$

$\boldsymbol{\eta}_{2}<\boldsymbol{\eta}_{1}$:- $\mathrm{E}_{1 \text { max }}$ occurs @ $\beta_{1} Z_{\max }=\frac{-(2 n+1) \pi}{2} \Rightarrow Z_{\max }=\frac{-(2 n+1) \pi}{2 \beta_{1}}=\frac{-(2 n+1) \lambda_{1}}{4}$

$$
\beta_{1} Z_{\min }=n \pi \Rightarrow Z_{\min }=\frac{-\mathrm{n} \pi}{\beta_{1}}=\frac{-\mathrm{n} \lambda_{1}}{2}
$$

H_{1} min occurs when there is $\left|\mathrm{t}_{1}\right| \max$
$\mathrm{S}=\frac{\left|\mathrm{E}_{1}\right|_{\text {max }}}{\left|\mathrm{E}_{1}\right|_{\text {min }}}=\frac{\left|\mathrm{H}_{1}\right|_{\text {max }}}{\left|\mathrm{H}_{1}\right|_{\text {min }}}=\frac{1+|\Gamma|}{1-|\Gamma|} ;|\Gamma|=\frac{s-1}{s+1}$
Since $|\Gamma|<1 \Rightarrow 1 \leq \delta \leq \infty$

Transmission Lines :-

- Supports only TEM mode
- $\mathrm{LC}=\mu \varepsilon ; \mathrm{G} / \mathrm{C}=\sigma / \varepsilon$.
- $\frac{d^{2} V_{s}}{d z^{2}}-r^{2} V_{s}=0 ; \frac{d^{2} I_{s}}{d z^{2}}-r^{2} I_{s}=0$
- $\Gamma=\sqrt{(R+j \omega L)(G+j \omega C)}=\alpha+j \beta$
- $\mathrm{V}(\mathrm{z}, \mathrm{t})=\mathrm{V}_{0}^{+} \mathrm{e}^{-\alpha \mathrm{z}} \cos (\omega \mathrm{t}-\beta \mathrm{z})+\mathrm{V}_{0}^{-} \mathrm{e}^{\alpha \mathrm{z}} \cos (\omega \mathrm{t}+\beta \mathrm{z})$
- $Z_{0}=-\frac{v_{0}^{-}}{I_{0}^{-}}=\frac{R+j \omega L}{\gamma}=\frac{\gamma}{G+j \omega C}=\sqrt{\frac{R+j \omega L}{G+j \omega C}}$

Lossless Line : $(\mathbf{R}=\mathbf{0}=\mathbf{G} ; \boldsymbol{\sigma}=\mathbf{0})$
$\rightarrow \gamma=\alpha+\mathrm{j} \beta=\mathrm{j} \omega \sqrt{\mathrm{LC}} ; \alpha=0, \beta=\mathrm{w} \sqrt{\mathrm{LC}} ; \lambda=1 / \mathrm{f} \sqrt{\mathrm{LC}}, \mathrm{u}=1 / \sqrt{\mathrm{LC}}$ $\mathrm{Z}_{0}=\sqrt{\mathrm{L} / \mathrm{C}}$

Distortion less : $(\mathrm{R} / \mathrm{L}=\mathrm{G} / \mathrm{C})$

$\rightarrow \alpha=\sqrt{R G} ; \beta=\omega L \sqrt{\frac{G}{R}}=\omega C \sqrt{\frac{R}{G}}=\omega \sqrt{L C}$
$\rightarrow \mathrm{Z}_{0}=\sqrt{\frac{\mathrm{R}}{\mathrm{G}}}=\sqrt{\frac{\mathrm{L}}{\mathrm{C}}} ; \lambda=1 / \mathrm{f} \sqrt{\mathrm{LC}} ; \mathrm{u}=\frac{1}{\sqrt{\mathrm{LC}}}=\mathrm{V}_{\mathrm{p}} ; \mathrm{uz}_{0}=1 / \mathrm{C}, \mathrm{u} / \mathrm{z}_{0}=1 / \mathrm{L}$

i/p impedance :-

$$
\begin{aligned}
& \mathrm{Z}_{\text {in }}=\mathrm{Z}_{0}\left[\frac{Z_{L}+\mathrm{Z}_{0} \tanh }{Z_{0}+\mathrm{Z}_{\mathrm{L}} \operatorname{tanh1}}\right] \text { for lossless line } \gamma=\mathrm{j} \beta \Rightarrow \tan \mathrm{hj} \beta 1=\mathrm{j} \tan \beta 1 \\
& \mathrm{Z}_{\text {in }}=\mathrm{Z}_{0}\left[\frac{Z_{L}+j \mathrm{Z}_{0} \tan \beta 1}{Z_{0}+\mathrm{Z}_{\mathrm{L}} \tan \beta 1}\right]
\end{aligned}
$$

- $\operatorname{VSWR}=\Gamma_{\mathrm{L}}=\frac{\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}}{\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}}$
- $\mathrm{CSWR}=-\Gamma_{\mathrm{L}}$
- Transmission coefficient $S=1+\Gamma$
- $\quad \mathrm{SWR}=\frac{\mathrm{V}_{\text {max }}}{\mathrm{V}_{\text {min }}}=\frac{\mathrm{I}_{\text {max }}}{\mathrm{I}_{\text {min }}}=\frac{1+\left|\Gamma_{\mathrm{L}}\right|}{1-\left|\Gamma_{\mathrm{L}}\right|}=\frac{\mathrm{Z}_{\mathrm{L}}}{\mathrm{Z}_{0}} \quad=\frac{\mathrm{Z}_{0}}{\mathrm{Z}_{\mathrm{L}}}$

$$
\left(\mathrm{Z}_{\mathrm{L}}>\mathrm{Z}_{0}\right) \quad\left(\mathrm{Z}_{\mathrm{L}}<\mathrm{Z}_{0}\right)
$$

- $\left|\mathrm{Z}_{\text {in }}\right|_{\text {max }}=\frac{\mathrm{V}_{\text {max }}}{\mathrm{I}_{\text {min }}}=\mathrm{SZ}_{0}$
- $\left|\mathrm{Z}_{\text {in }}\right|_{\text {min }}=\frac{\mathrm{V}_{\text {min }}}{\mathrm{I}_{\text {max }}}=\mathrm{Z}_{0} / \mathrm{S}$

Shorted line :- $\Gamma_{\mathrm{L}}=-1, \mathrm{~S}=\infty \quad \mathrm{Z}_{\mathrm{in}}=\mathrm{Z}_{\mathrm{sc}}=\mathrm{j} \mathrm{Z}_{0} \tan \beta l$
17 No. 1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram \& Jayanagar, Bangalore. Ph: o 99003 99699/ o 9741900225 / 080-32552008

Email : onlineies.com@gmail.com Site: www.onlineIES.com
Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies

- $\Gamma_{L}=-1, S=\infty \quad Z_{\text {in }}=Z_{\text {sc }}=j Z_{0} \tan \beta 1$.
- Z_{in} may be inductive or capacitive based on length ' 0 '

$$
\begin{aligned}
& \text { If } l<\lambda / 4 \rightarrow \text { inductive }\left(\mathrm{Z}_{\text {in }}+\mathrm{ve}\right) \\
& \frac{\lambda}{4}<l<\lambda / 2 \rightarrow \text { capacitive }\left(\mathrm{Z}_{\text {in }}-\mathrm{ve}\right)
\end{aligned}
$$

Open circuited line :-

$Z_{\text {in }}=Z_{\text {oc }}=-\mathrm{j} \mathrm{Z}_{0} \cot \beta l$
$\Gamma_{1}=1 \quad \mathrm{~s}=\infty \quad l<\lambda / 4 \quad$ capacitive $\frac{\lambda}{4}<l<\lambda / 2$ inductive
$\mathrm{Z}_{\mathrm{sc}} \mathrm{Z}_{\mathrm{oc}}=\mathrm{Z}_{0}^{2}$
Matched line: $\left(\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0}\right)$
$\mathrm{Z}_{\mathrm{in}}=\mathrm{Z}_{0} \quad \Gamma=0 ; \mathrm{s}=1$
No reflection. Total wave $\mathrm{T}_{\mathrm{xed}}$. So, max power transfer possible,

Behaviour of Transmission Line for Different lengths :-

$$
\left.l=\lambda / 4 \rightarrow \begin{array}{c}
z_{s c}=\infty \\
Z_{o c}=0
\end{array}\right\} \rightarrow \text { impedance inverter @ } l=\lambda / 4
$$

$\left.l=\lambda / 2: \mathrm{Z}_{\mathrm{in}}=\mathrm{Z}_{0} \Rightarrow \begin{array}{c}Z_{s c}=0 \\ Z_{o c}=\infty\end{array}\right\}$ impedance reflector $@ l=\lambda / 2$

Wave Guides :-

TM modes: $\left(\mathrm{H}_{\mathrm{z}}=0\right)$

$$
\mathrm{E}_{\mathrm{Z}}=\mathrm{E}_{0} \sin \left(\frac{m \pi}{a}\right) x \sin \left(\frac{n \pi}{b}\right) \mathrm{y}^{-\mathrm{nz}}
$$

$$
\mathrm{h}^{2}=\mathrm{k}_{\mathrm{x}}^{2}+\mathrm{k}_{\mathrm{y}}^{2} \quad \therefore \gamma=\sqrt{\left(\frac{\mathrm{m} \pi}{\mathrm{a}}\right)^{2}+\left(\frac{\mathrm{n} \pi}{\mathrm{~b}}\right)^{2}-\omega^{2} \mu \varepsilon} \quad \text { where } \mathrm{k}=\omega \sqrt{\mu \epsilon}
$$

$\mathrm{m} \rightarrow$ no. of half cycle variation in X-direction
$\mathrm{n} \rightarrow \mathrm{no}$. of half cycle variation in Y- direction .
Cut offfrequency $\omega_{C}=\frac{1}{\sqrt{\mu \epsilon}} \sqrt{\left(\frac{\mathrm{~m} \pi}{\mathrm{a}}\right)^{2}+\left(\frac{\mathrm{n} \pi}{\mathrm{b}}\right)^{2}} \quad \gamma=0 ; \alpha=0=\beta$

- $\mathrm{k}^{2}<\left(\frac{\mathrm{m} \pi}{\mathrm{a}}\right)^{2}+\left(\frac{\mathrm{n} \pi}{\mathrm{b}}\right)^{2} \rightarrow$ Evanscent mode ; $\gamma=\alpha ; \beta=0$
- $k^{2}>\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2} \rightarrow$ Propegation mode $\gamma=j \beta \quad \alpha=0$

$$
\beta=\sqrt{\mathrm{k}^{2}-\left(\frac{\mathrm{m} \pi}{\mathrm{a}}\right)^{2}-\left(\frac{\mathrm{n} \pi}{\mathrm{~b}}\right)^{2}}
$$

- $f_{c}=\frac{u_{p}^{\prime}}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}} u_{p}^{\prime}=$ phase velocity $=\frac{1}{\sqrt{\mu \epsilon}}$ is lossless dielectric medium

Email : onlineies.com@gmail.com Site: www.onlineIES.com Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies

- $\lambda_{c}=u^{\prime} / f_{c}=\frac{2}{\sqrt{\left(\frac{\mathrm{~m}}{\mathrm{a}}\right)^{2}+\left(\frac{\mathrm{n}}{\mathrm{b}}\right)^{2}}}$
- $\beta=\beta^{\prime} \sqrt{1-\left(\frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}}\right)^{2}} \quad \beta^{\prime}=\omega / \mathrm{W} \quad \beta^{\prime}=$ phase constant in dielectric medium.
- $u_{p}=\omega / \beta \quad \lambda=2 \pi / \beta=u_{p} / f \rightarrow$ phase velocity \& wave length in side wave guide
- $\eta_{T M}=\frac{E_{x}}{H_{y}}=-\frac{E_{y}}{H_{x}}=\frac{\beta}{\omega \epsilon}=\sqrt{\frac{\mu}{\varepsilon}} \sqrt{1-\left(\frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}}\right)^{2}}$
$\eta_{\text {TM }}=\eta^{\prime} \sqrt{1-\left(\frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}}\right)^{2}} \quad \eta^{\prime} \rightarrow$ impedance of UPW in medium
TE Modes :- $\left(\mathbf{E}_{\mathbf{z}}=\mathbf{0}\right)$
$\rightarrow \mathrm{H}_{\mathrm{z}}=\mathrm{H}_{0} \cos \left(\frac{m \pi x}{a}\right) \cos \left(\frac{n \pi y}{b}\right) \mathrm{e}^{-\mathrm{nz}}$
$\rightarrow \eta_{\text {TE }}=\frac{w \mu}{\beta}=\eta^{\prime} / \sqrt{1-\left(\frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}}\right)^{2}}$
$\rightarrow \eta_{\mathrm{TE}}>\eta_{\mathrm{TM}}$
$\rightarrow \mathrm{TE}_{10}$ Dominant mode

Antennas:-

Hertzian Dipole :- $\mathrm{H}_{\Phi \mathrm{S}}=\frac{\mathrm{il}_{0} \beta \mathrm{dl}}{4 \pi \mathrm{r}} \sin \theta \mathrm{e}^{-\mathrm{j} \beta \gamma} \quad \mathrm{E}_{\theta \mathrm{s}}=\eta \mathrm{H}_{\Phi \mathrm{S}}$

Half wave Dipole :-

$$
\mathrm{H}_{\phi \mathrm{S}}=\frac{\mathrm{j} \mathrm{j}_{0} \mathrm{e}^{-\mathrm{j} \beta \gamma} \cos \left(\frac{\pi}{2} \cos \theta\right)}{2 \pi \gamma \sin \theta} ; \quad \mathrm{E}_{\theta \mathrm{S}}=\eta \mathrm{H}_{\Phi \mathrm{S}}
$$

EDC \& Analog

- Energy gap $\left.\begin{array}{c}E_{\mathrm{G} / \mathrm{si}}=1.21-3.6 \times 10^{-4} \cdot \mathrm{~T} \text { ev } \\ E_{\mathrm{G} / \mathrm{Ge}}=0.785-2.23 \times 10^{-4} . \mathrm{T} \text { ev }\end{array}\right\}$ Energy gap depending on temperature
- $\mathrm{E}_{\mathrm{F}}=\mathrm{E}_{\mathrm{C}}-\mathrm{KT} \ln \left(\frac{N_{C}}{N_{D}}\right)=\mathrm{E}_{\mathrm{V}}+\mathrm{KT} \ln \left(\frac{N_{v}}{N_{A}}\right)$
- No. of electrons $n=N_{c} e^{-\left(E_{c}-E_{f}\right) / R T} \quad$ (KT in ev)
- No. of holes $p=N_{v} e^{-\left(E_{f}-E_{v}\right) / R T}$
- Mass action law $n_{p}=n_{i}^{2}=N_{c} N_{v} e^{-E G / K T}$
- Drift velocity $v_{\mathrm{d}}=\mu \mathrm{E}$ (for si $v_{\mathrm{d}} \leq 10^{7} \mathrm{~cm} / \mathrm{sec}$)

19 No. 1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram \&
Jayanagar, Bangalore. Ph: o 99003 99699/ o 9741900225 / 080-32552008
Email : onlineies.com@gmail.com Site: www.onlineIES.com
Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies

- Hall voltage $v_{\mathrm{H}}=\frac{\text { B.I }}{w_{\mathrm{e}}}$. Hall coefficient $\mathrm{R}_{\mathrm{H}}=1 / \rho . \quad \rho \rightarrow$ charge density $=\mathrm{qN}_{0}=$ ne \ldots
- Conductivity $\sigma=\rho \mu ; \mu=\sigma \mathrm{R}_{\mathrm{H}}$.
- Max value of electric field @ junction $E_{0}=-\frac{q}{\epsilon_{\mathrm{si}}} N_{d} \cdot n_{n 0}=-\frac{q}{\epsilon_{\mathrm{si}}} N_{A} \cdot n_{p 0}$.
- Charge storage @ junction $\mathrm{Q}_{+}=-\mathrm{Q}_{-}=\mathrm{qA} \mathrm{x}_{\mathrm{n} 0} \mathrm{~N}_{\mathrm{D}}=\mathrm{qA} \mathrm{x}_{\mathrm{p} 0} \mathrm{~N}_{\mathrm{A}}$

EDC

- Diffusion current densities $J_{p}=-q D_{p} \frac{d p}{d x} \quad J_{n}=-q D_{n} \frac{d n}{d x}$
- Drift current Densities $=q\left(p \mu_{p}+n \mu_{n}\right) E$
- $\mu_{\mathrm{p}}, \mu_{\mathrm{n}}$ decrease with increasing doping concentration.
- $\frac{\mathrm{D}_{\mathrm{n}}}{\mu_{\mathrm{n}}}=\frac{\mathrm{D}_{\mathrm{p}}}{\mu_{\mathrm{p}}}=\mathrm{KT} / \mathrm{q} \approx 25 \mathrm{mv} @ 300 \mathrm{~K}$
- Carrier concentration in N-type silicon $\mathrm{n}_{\mathrm{n} 0}=\mathrm{N}_{\mathrm{D}} ; \mathrm{p}_{\mathrm{n} 0}=\mathrm{n}_{\mathrm{i}}^{2} / \mathrm{N}_{\mathrm{D}}$
- Carrier concentration in P-type silicon $\mathrm{p}_{\mathrm{p} 0}=\mathrm{N}_{\mathrm{A}} ; \mathrm{n}_{\mathrm{p} 0}=\mathrm{n}_{\mathrm{i}}^{2} / \mathrm{N}_{\mathrm{A}}$
- Junction built in voltage $\mathrm{V}_{0}=\mathrm{V}_{\mathrm{T}} \ln \left(\frac{N_{A} N_{D}}{n_{i}^{2}}\right)$
- Width of Depletion region $W_{\text {dep }}=x_{p}+x_{n}=\sqrt{\frac{2 \varepsilon_{s}}{\mathrm{q}}\left(\frac{1}{\mathrm{~N}_{\mathrm{A}}}+\frac{1}{\mathrm{~N}_{\mathrm{D}}}\right)\left(\mathrm{V}_{0}+\mathrm{V}_{\mathrm{R}}\right)}$
* $\left(\frac{2 \varepsilon_{f t}}{q}=12.93 \mathrm{~m}\right.$ for si$)$
- $\frac{x_{n}}{x_{p}}=\frac{N_{A}}{N_{D}}$
- Charge stored in depletion region $q_{J}=\frac{q^{\prime} \cdot N_{A} N_{D}}{N_{A}+N_{D}} \cdot A, W_{\text {dep }}$
- Depletion capacitance $\mathrm{C}_{\mathrm{j}}=\frac{\varepsilon_{s} \mathrm{~A}}{W_{\text {dep }}} ; \mathrm{C}_{\mathrm{j} 0}=\frac{\varepsilon_{\mathrm{s}} \mathrm{A}}{\mathrm{W}_{\text {dep }} / V_{R}=0}$

$$
\begin{aligned}
& C_{j}=C_{j 0} /\left(1+\frac{V_{R}}{V_{0}}\right)^{m} \\
& C_{j}=2 C_{j 0}(\text { for forward Bias })
\end{aligned}
$$

- Forward current $\mathrm{I}=\mathrm{I}_{\mathrm{p}}+\mathrm{I}_{\mathrm{n}} ; \quad \mathrm{I}_{\mathrm{p}}=\mathrm{Aq}_{\mathrm{n}}^{2} \frac{\mathrm{D}_{\mathrm{p}}}{\mathrm{L}_{\mathrm{p}} \mathrm{N}_{\mathrm{D}}}\left(e^{V / V_{T}}-1\right)$

$$
\mathrm{I}_{\mathrm{n}}=\mathrm{Aq} \mathrm{n}_{\mathrm{i}}^{2} \frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{~L}_{\mathrm{n}} \mathrm{~N}_{\mathrm{A}}}\left(e^{V / V_{T}}-1\right)
$$

- Saturation Current $I_{s}=A q n_{i}^{2}\left(\frac{D_{p}}{L_{p} N_{D}}+\frac{D_{n}}{L_{n} N_{A}}\right)$
- Minority carrier life time $\tau_{p}=L_{p}^{2} / D_{p} ; \tau_{n}=L_{n}^{2} / D_{n}$
- Minority carrier charge storage $Q_{p}=\tau_{p} I_{p}, Q_{n}=\tau_{p} I_{n}$

$$
\mathrm{Q}=\mathrm{Q}_{\mathrm{p}}+\mathrm{Q}_{\mathrm{n}}=\tau_{\mathrm{T}} \mathrm{I} \quad \tau_{\mathrm{T}}=\text { mean transist time }
$$

- Diffusion capacitance $\mathrm{C}_{\mathrm{d}}=\left(\frac{\tau_{T}}{\eta V_{T}}\right) \mathrm{I}=\tau . \mathrm{g} \Rightarrow \mathrm{C}_{\mathrm{d}} \propto \mathrm{I}$.
$\tau \rightarrow$ carrier life time, $\mathrm{g}=$ conductance $=\mathrm{I} / \eta V_{T}$
- $\mathrm{I}_{02}=2^{\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) / 10} \mathrm{I}_{01}$
- Junction Barrier Voltage $\mathrm{V}_{\mathrm{j}}=\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{r}}$ (open condition)
$=V_{r}-\mathrm{V}$ (forward Bias)
$=\mathrm{V}_{\mathrm{r}}+\mathrm{V}$ (Reverse Bias)
- Probability of filled states above ' E ' $f(E)=\frac{1}{1+e^{\left(E-E_{f}\right) / K T}}$

No. 1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram \& Jayanagar, Bangalore. Ph: o 99003 99699/ o 9741900225 / 080-32552008

Email : onlineies.com@gmail.com Site: www.onlineIES.com
Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies

- Drift velocity of $\mathrm{e}^{-} \quad v_{\mathrm{d}} \leq 10^{7} \mathrm{~cm} / \mathrm{sec}$
- Poisson equation $\frac{d^{2} V}{d^{2}}=\frac{-\rho_{v}}{\epsilon}=\frac{-n q}{\epsilon} \Rightarrow \frac{d v}{d x}=E=\frac{-n q x}{\epsilon}$

Transistor :-

- $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{DE}}+\mathrm{I}_{\mathrm{nE}}$
- $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{Co}}-\alpha \mathrm{I}_{\mathrm{E}} \rightarrow$ Active region
- $\mathrm{I}_{\mathrm{C}}=-\alpha \mathrm{I}_{\mathrm{E}}+\mathrm{I}_{\mathrm{Co}}\left(1-\mathrm{e}^{\mathrm{V}_{\mathrm{C}} / \mathrm{V}_{\mathrm{T}}}\right)$

Common Emitter :-

- $\mathrm{I}_{\mathrm{C}}=(1+\beta) \mathrm{I}_{\mathrm{Co}}+\beta \mathrm{I}_{\mathrm{B}} \quad \beta=\frac{\alpha}{1-\alpha}$
- $\mathrm{I}_{\text {CEO }}=\frac{\mathrm{I}_{\mathrm{Co}}}{1-\alpha} \rightarrow$ Collector current when base open
- $\mathrm{I}_{\text {CBO }} \rightarrow$ Collector current when $\mathrm{I}_{\mathrm{E}}=0 \quad \mathrm{I}_{\mathrm{CBO}}>\mathrm{I}_{\mathrm{Co}}$.
- $\mathrm{V}_{\mathrm{BE}, \text { sat }}$ or $\mathrm{V}_{\mathrm{BC}, \text { sat }} \rightarrow-2.5 \mathrm{mv} /{ }^{0} \mathrm{C} ; \quad \mathrm{V}_{\mathrm{CE}, \text { sat }} \rightarrow \frac{\mathrm{V}_{\mathrm{BE}, \text { sat }}}{10}=-0.25 \mathrm{mv} /{ }^{0} \mathrm{C}$
- Large signal Current gain $\beta=\frac{\mathrm{I}_{\mathrm{C}}-\mathrm{I}_{\mathrm{CBo}}}{\mathrm{I}_{\mathrm{B}} \mathrm{I}_{\mathrm{CBo}}}$
- D.C current gain $\beta_{\mathrm{dc}}=\frac{\mathrm{I}_{\mathrm{c}}}{\mathrm{I}_{\mathrm{B}}}=\mathrm{h}_{\mathrm{FE}}$
- $\left(\beta_{\mathrm{dc}}=\mathrm{h}_{\mathrm{FE}}\right) \approx \beta$ when $\mathrm{I}_{\mathrm{B}}>\mathrm{I}_{\mathrm{CBo}}$
- Small signal current gain $\beta^{\prime}=\left.\frac{\partial \mathrm{I}_{\mathrm{C}}}{\partial \mathrm{I}_{\mathrm{R}}}\right|_{\mathrm{V}_{\mathrm{CE}}}=\mathrm{h}_{\mathrm{fe}}=\frac{\mathrm{h}_{\mathrm{FE}}}{1-\left(\mathrm{I}_{\mathrm{CBO}}+\mathrm{I}_{\mathrm{B}}\right) \frac{\partial \mathrm{h}_{\mathrm{FE}}}{\partial \mathrm{I}_{\mathrm{C}}}}$
- \quad Over drive factor $=\frac{\beta_{\text {active }}}{\beta_{\text {forced }} \rightarrow \text { under saturation }} \quad \because \mathrm{I}_{\mathrm{C} \text { sat }}=\beta_{\text {forced }} \mathrm{I}_{\mathrm{B} \text { sat }}$

Conversion formula :-

$\mathbf{C C} \leftrightarrow \mathbf{C E}$

- $\mathrm{h}_{\mathrm{ic}}=\mathrm{h}_{\mathrm{ie}} ; \quad \mathrm{h}_{\mathrm{rc}}=1 ; \quad \mathrm{h}_{\mathrm{fc}}=-\left(1+\mathrm{h}_{\mathrm{fe}}\right) ; \quad \mathrm{h}_{\mathrm{oc}}=\mathrm{h}_{\mathrm{oe}}$
$\mathrm{CB} \leftrightarrow \mathrm{CE}$
- $\mathrm{h}_{\mathrm{ib}}=\frac{\mathrm{h}_{\mathrm{ie}}}{1+\mathrm{h}_{\mathrm{fe}}} ; \mathrm{h}_{\mathrm{ib}}=\frac{\mathrm{h}_{\mathrm{ie}} \mathrm{h}_{\mathrm{oe}}}{1+\mathrm{h}_{\mathrm{fe}}}-\mathrm{h}_{\mathrm{re}} ; \mathrm{h}_{\mathrm{fb}}=\frac{-\mathrm{h}_{\mathrm{fe}}}{1+\mathrm{h}_{\mathrm{fe}}} ; \quad \mathrm{h}_{\mathrm{ob}}=\frac{\mathrm{h}_{\mathrm{oe}}}{1+\mathrm{h}_{\mathrm{fe}}}$

CE parameters in terms of CB can be obtained by interchanging $\mathrm{B} \& \mathrm{E}$.

Specifications of An amplifier :-

- $A_{I}=\frac{-h_{f}}{1+h_{0} Z_{L}} \quad Z_{i}=h_{i}+h_{r} A_{I} Z_{L} \quad A_{v s}=\frac{A_{v} \cdot Z_{i}}{Z_{i}+R_{s}}=\frac{A_{I} \cdot Z_{L}}{Z_{i}+R_{s}}=\frac{A_{I S} \cdot Z_{L}}{R_{s}}$

$$
A_{V}=\frac{A_{I} Z_{L}}{Z_{i}} \quad Y_{0}=h_{o}-\frac{h_{f} h_{r}}{h_{i}+R_{s}} \quad A_{I S}=\frac{A_{\mathrm{V}} \cdot R_{s}}{Z_{i}+R_{s}}=\frac{A_{v s} \cdot R_{s}}{Z_{L}}
$$

Choice of Transistor Configuration :-

- For intermediate stages CC can't be used as $A_{V}<1$
- CE can be used as intermediate stage
- CC can be used as o/p stage as it has low o/p impedance
- CC/CB can be used as i / p stage because of i / p considerations.

Email : onlineies.com@gmail.com Site: www.onlineIES.com Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies

Stability \& Biasing :- (Should be as min as possible)

- For $\mathrm{S}=\left.\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{Co}}}\right|_{\mathrm{V}_{\mathrm{B} 0, \beta}} \quad \mathrm{~S}^{\prime}=\left.\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{V}_{\mathrm{BE}}}\right|_{\mathrm{I}_{\mathrm{C} 0, \beta}} \quad \mathrm{~S}^{\prime \prime}=\left.\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \beta}\right|_{\mathrm{V}_{\mathrm{BE}, \mathrm{I}_{\mathrm{Co}}}}$

$$
\Delta \mathrm{I}_{\mathrm{C}}=\mathrm{S} . \Delta \mathrm{I}_{\mathrm{Co}}+\mathrm{S}^{\prime} \Delta \mathrm{V}_{\mathrm{BE}}+\mathrm{S}^{\prime \prime} \Delta \beta
$$

- For fixed bias $S=\frac{1+\beta}{1-\beta \frac{\mathrm{dI}_{\mathrm{B}}}{\mathrm{dI}_{\mathrm{C}}}}=1+\beta$
- Collector to Base bias $S=\frac{1+\beta}{1+\beta \frac{R_{C}}{R_{C}+R_{B}}}$
$0<\mathrm{s}<1+\beta=\frac{1+\beta}{1+\beta\left(\frac{\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{\mathrm{E}}}{\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{\mathrm{E}}+\mathrm{R}_{\mathrm{B}}}\right)}$
- Self bias $\mathrm{S}=\frac{1+\beta}{1+\beta \frac{\mathrm{R}_{\mathrm{E}}}{\mathrm{R}_{\mathrm{E}}+\mathrm{R}_{\mathrm{th}}}} \approx 1+\frac{\mathrm{R}_{\text {th }}}{\mathrm{R}_{\mathrm{e}}} \quad \beta \mathrm{R}_{\mathrm{E}}>10 \mathrm{R}_{2}$
- $\mathrm{R}_{1}=\frac{\mathrm{V}_{\mathrm{cc}} \mathrm{R}_{\mathrm{th}}}{\mathrm{V}_{\mathrm{th}}} \quad ; \mathrm{R}_{2}=\frac{\mathrm{V}_{\mathrm{cc}} \mathrm{R}_{\mathrm{th}}}{\mathrm{V}_{\mathrm{cc}}-\mathrm{V}_{\mathrm{th}}}$
- For thermal stability $\left[\mathrm{V}_{\mathrm{cc}}-2 \mathrm{I}_{\mathrm{c}}\left(\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{\mathrm{E}}\right)\right]\left[0.07 \mathrm{I}_{\mathrm{co}} \cdot \mathrm{S}\right]<1 / \theta ; \quad \mathrm{V}_{\mathrm{CE}}<\frac{\mathrm{V}_{\mathrm{CC}}}{2}$

Hybrid -pi(π)- Model :-

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{m}}=\left|\mathrm{I}_{\mathrm{C}}\right| / \mathrm{V}_{\mathrm{T}} \\
& \mathrm{r}_{\mathrm{b}^{\prime} \mathrm{e}}=\mathrm{h}_{\mathrm{fe}} / \mathrm{g}_{\mathrm{m}} \\
& \mathrm{r}_{\mathrm{b}^{\prime} \mathrm{b}}=\mathrm{h}_{\mathrm{ie}}-\mathrm{r}_{\mathrm{b}^{\prime} \mathrm{e}} \\
& \mathrm{r}_{\mathrm{b}^{\prime} \mathrm{c}}=\mathrm{r}_{\mathrm{b}^{\prime} \mathrm{e}} / \mathrm{h}_{\mathrm{re}} \\
& \mathrm{~g}_{\mathrm{ce}}=\mathrm{h}_{\mathrm{oe}}-\left(1+\mathrm{h}_{\mathrm{fe}}\right) \mathrm{g}_{\mathrm{b}^{\prime} \mathrm{c}}
\end{aligned}
$$

For CE :-

- $\mathrm{f}_{\beta}=\frac{\mathrm{g}_{b^{\prime} \mathrm{e}}}{2 \pi\left(\mathrm{C}_{\mathrm{e}}+\mathrm{C}_{\mathrm{c}}\right)}=\frac{\mathrm{gm}_{\mathrm{m}}}{\mathrm{h}_{\mathrm{fe}} 2 \pi\left(\mathrm{C}_{\mathrm{e}}+\mathrm{C}_{\mathrm{c}}\right)}$
- $\mathrm{f}_{\mathrm{T}}=\mathrm{h}_{\mathrm{fe}} \mathrm{f}_{\beta} ; \mathrm{f}_{\mathrm{H}}=\frac{1}{2 \pi \mathrm{r}_{\mathrm{b}^{\prime} \mathrm{e}} \mathrm{C}}=\frac{\mathrm{g}_{\mathrm{b}^{\prime} e}}{2 \pi \mathrm{C}}$ $C=C_{e}+C_{c}\left(1+g_{m} R_{L}\right)$
$\mathrm{f}_{\mathrm{T}}=$ S.C current gain Bandwidth product
$\mathrm{f}_{\mathrm{H}}=$ Upper cutoff frequency
For CC:-
- $\mathrm{f}_{\mathrm{H}}=\frac{1+\mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{L}}}{2 \pi \mathrm{C}_{\mathrm{L}} \mathrm{R}_{\mathrm{L}}} \approx \frac{\mathrm{g}_{\mathrm{m}}}{2 \pi \mathrm{C}_{\mathrm{L}}}=\frac{\mathrm{f}_{\mathrm{T}} \mathrm{C}_{\mathrm{e}}}{\mathrm{C}_{\mathrm{L}}}=\frac{\mathrm{g}_{\mathrm{m}}+\mathrm{g}_{\mathrm{b}^{\prime} \mathrm{e}}}{2 \pi\left(\mathrm{C}_{\mathrm{L}}+\mathrm{C}_{\mathrm{e}}\right)}$

For CB:-

- $\mathrm{f}_{\alpha}=\frac{1+\mathrm{h}_{\mathrm{fe}}}{2 \pi \mathrm{r}_{\mathrm{b}^{\prime} \mathrm{e}}\left(\mathrm{C}_{\mathrm{C}}+\mathrm{C}_{\mathrm{e}}\right)}=\left(1+\mathrm{h}_{\mathrm{fe}}\right) \mathrm{f}_{\beta}=(1+\beta) \mathrm{f}_{\beta}$

Email : onlineies.com@gmail.com Site: www.onlineIES.com
Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies

- $f_{T}=\frac{\beta}{1+\beta} f_{\alpha}$
$\mathrm{f}_{\alpha}>\mathrm{f}_{\mathrm{T}}>\mathrm{f}_{\beta}$

Ebress moll model :-

$I_{C}=-\alpha_{N} I_{E}+I_{C o}\left(1-e^{V / V_{T}}\right)$
$\mathrm{I}_{\mathrm{E}}=-\alpha_{\mathrm{I}} \mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{Eo}}\left(1-\mathrm{e}^{\mathrm{V} / \mathrm{V}_{\mathrm{T}}}\right)$

$\alpha_{\mathrm{I}} \mathrm{I}_{\mathrm{Co}}=\alpha_{\mathrm{N}} \mathrm{I}_{\mathrm{Eo}}$

Multistage Amplifiers :-

- $\mathrm{f}_{\mathrm{H}} *=\mathrm{f}_{\mathrm{H}} \sqrt{2^{1 / \mathrm{n}}-1} ; \mathrm{f}_{\mathrm{L}}^{*}=\frac{\mathrm{f}_{\mathrm{L}}}{\sqrt{2^{1 / \mathrm{n}-1}}}$
- Rise time $t_{r}=\frac{0.35}{f_{H}}=\frac{0.35}{\text { B.W }}$
- $\mathrm{t}_{\mathrm{r}}^{*}=1.1 \sqrt{\mathrm{t}_{\mathrm{r} 1}^{2}+\mathrm{t}_{\mathrm{r} 2}^{2}+\cdots}$
- $\mathrm{f}_{\mathrm{L}}^{*}=1.1 \sqrt{\mathrm{f}_{\mathrm{L}_{1}}^{2}+\mathrm{f}_{\mathrm{L}_{2}}^{2}+\cdots}$
- $\frac{1}{\mathrm{f}_{\mathrm{H}}^{\mathrm{H}}}=1.1 \sqrt{\frac{1}{\mathrm{f}_{\mathrm{H}_{1}}^{2}}+\frac{1}{\mathrm{f}_{\mathrm{H}_{2}}^{2}}+\cdots}$

Differential Amplifier :-

- $\mathrm{Z}_{\mathrm{i}}=\mathrm{h}_{\mathrm{ie}}+\left(1+\mathrm{h}_{\mathrm{fe}}\right) 2 \mathrm{R}_{\mathrm{e}}=2 \mathrm{~h}_{\mathrm{fe}} \mathrm{R}_{\mathrm{e}} \approx 2 \beta \mathrm{R}_{\mathrm{e}}$
- $\mathrm{g}_{\mathrm{m}}=\frac{\alpha_{0}\left|\mathrm{I}_{\mathrm{EE}}\right|}{4 \mathrm{~V}_{\mathrm{T}}}=\frac{\mathrm{I}_{\mathrm{C}}}{4 \mathrm{~V}_{\mathrm{T}}}=\mathrm{g}_{\mathrm{m}}$ of BJT/4 $\quad \alpha_{0} \rightarrow$ DC value of α
- $\quad \mathrm{CMRR}=\frac{\mathrm{h}_{\mathrm{f}} \mathrm{R}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{s}}+\mathrm{h}_{\mathrm{ie}}} \quad ; \quad \mathrm{R}_{\mathrm{e}} \uparrow \xrightarrow{ } \rightarrow \mathrm{Z}_{\mathrm{i}} \uparrow, \mathrm{A}_{\mathrm{d}} \uparrow \& \operatorname{CMRR} \uparrow$

Darlington Pair :-

- $A_{I}=\left(1+\beta_{1}\right)\left(1+\beta_{2}\right) ; \quad A_{v} \approx 1(<1)$
- $\mathrm{Z}_{\mathrm{i}}=\frac{\left(1+\mathrm{h}_{\mathrm{fe}}\right)^{2} \mathrm{R}_{\mathrm{e} 2}}{1+\mathrm{h}_{\mathrm{fe}} \mathrm{h}_{\mathrm{oc}} \mathrm{R}_{\mathrm{e} 2}} \Omega \quad\left[\right.$ if $\mathrm{Q}_{1} \& \mathrm{Q}_{2}$ have same type $]=\mathrm{A}_{\mathrm{I}} \mathrm{R}_{\mathrm{e} 2}$
- $\mathrm{R}_{\mathrm{o}}=\frac{\mathrm{R}_{\mathrm{s}}}{\left(1+\mathrm{h}_{\mathrm{fe}}\right)^{2}}+\frac{2 \mathrm{~h}_{\mathrm{ie}}}{1+\mathrm{h}_{\mathrm{fe}}}$
- $g_{m}=\left(1+\beta_{2}\right) g_{m 1}$

Tuned Amplifiers : (Parallel Resonant ckts used) :

- $f_{0}=\frac{1}{2 \pi \sqrt{L C}} \quad Q \rightarrow$ ' Q ' factor of resonant ckt which is very high

23 No. 1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram \& Jayanagar, Bangalore. Ph: o 99003 99699/ o 9741900225 / 080-32552008

Email : onlineies.com@gmail.com Site: www.onlineIES.com
Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies

- B. $\mathrm{W}=\mathrm{f}_{0} / \mathrm{Q}$
- $\mathrm{f}_{\mathrm{L}}=\mathrm{f}_{0}-\frac{\Delta \mathrm{BW}}{2}$
- $\mathrm{f}_{\mathrm{H}}=\mathrm{f}_{0}+\frac{\Delta \mathrm{BW}}{2}$
- For double tuned amplifier 2 tank circuits with same f_{0} used. $f_{0}=\sqrt{f_{L} f_{H}}$.

MOSFET (Enhancement) [Channel will be induced by applying voltage]

- NMOSFET formed in p-substrate
- If $\mathrm{V}_{\mathrm{GS}} \geq \mathrm{V}_{\mathrm{t}}$ channel will be induced \& i_{D} (Drain \rightarrow source)
- $V_{t} \rightarrow+v e$ for NMOS
- $i_{D} \propto\left(V_{G S}-V_{t}\right)$ for small $V_{D S}$
- $\mathrm{V}_{\mathrm{DS}} \uparrow \rightarrow$ channel width @ drain reduces .
$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}$ channel width $\approx 0 \rightarrow$ pinch off further increase no effect
- For every $\mathrm{V}_{\mathrm{GS}}>\mathrm{V}_{\mathrm{t}}$ there will be $\mathrm{V}_{\mathrm{DS}, \text { sat }}$
- $\mathrm{i}_{\mathrm{D}}=\mathrm{K}_{\mathrm{n}}^{\prime}\left[\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right) \mathrm{V}_{\mathrm{DS}}-\frac{1}{2} \mathrm{~V}_{\mathrm{DS}}^{2}\right]\left(\frac{W}{L}\right) \rightarrow$ triode region $\left(V_{\mathrm{DS}}<\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right)$

$$
\mathrm{K}_{\mathrm{n}}^{\prime}=\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}
$$

- $\quad \mathrm{i}_{\mathrm{D}}=\frac{1}{2} \mathrm{~K}_{\mathrm{n}}^{\prime}\left(\frac{W}{L}\right)\left[\mathrm{V}_{\mathrm{DS}}^{2}\right] \rightarrow$ saturation
- $\quad \mathrm{r}_{\mathrm{DS}}=\frac{1}{\mathrm{~K}_{\mathrm{n}}^{\prime}\left(\frac{W}{L}\right)\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right)} \rightarrow$ Drain to source resistance in triode region

PMOS :-

- Device operates in similar manner except $\mathrm{V}_{\mathrm{GS}}, \mathrm{V}_{\mathrm{DS}}, \mathrm{V}_{\mathrm{t}}$ are -ve
- i_{D} enters @ source terminal \& leaves through Drain .
$\mathrm{V}_{\mathrm{GS}} \leq \mathrm{V}_{\mathrm{t}} \rightarrow$ induced channel $\quad \mathrm{V}_{\mathrm{DS}} \geq \mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}} \rightarrow$ Continuous channel
$\mathrm{i}_{\mathrm{D}}=\mathrm{K}_{\mathrm{p}}^{\prime}\left(\frac{W}{L}\right)\left[\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right)^{2}-\frac{1}{2} \mathrm{~V}_{\mathrm{DS}}^{2}\right] \quad \mathrm{K}_{\mathrm{p}}^{\prime}=\mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}$
$\mathrm{V}_{\mathrm{DS}} \leq \mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}} \rightarrow$ Pinched off channel.
- NMOS Devices can be made smaller \& thus operate faster . Require low power supply .
- Saturation region \rightarrow Amplifier
- For switching operation Cutoff \& triode regions are used
- NMOS PMOS

[^2]\[

$$
\begin{array}{lcl}
\mathrm{V}_{\mathrm{GS}} \geq \mathrm{V}_{\mathrm{t}} & \mathrm{~V}_{\mathrm{GS}} \leq \mathrm{V}_{\mathrm{t}} & \rightarrow \text { induced channel } \\
\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{DS}}>\mathrm{V}_{\mathrm{t}} & \mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{DS}}<\mathrm{V}_{\mathrm{t}} & \rightarrow \text { Continuous channel(Triode region) } \\
\mathrm{V}_{\mathrm{DS}} \geq \mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}} & \mathrm{~V}_{\mathrm{DS}} \leq \mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}} & \rightarrow \text { Pinchoff (Saturation) }
\end{array}
$$
\]

Depletion Type MOSFET :- [channel is physically implanted . i_{0} flows with $\mathrm{V}_{\mathrm{GS}}=0$]

- For n-channel $\quad \mathrm{V}_{\mathrm{GS}} \rightarrow+\mathrm{ve} \rightarrow$ enhances channel .

$$
\rightarrow \text {-ve } \rightarrow \text { depletes channel }
$$

- $\quad i_{D}-V_{D S}$ characteristics are same except that V_{t} is -ve for n-channel
- Value of Drain current obtained in saturation when $V_{G S}=0 \Rightarrow I_{D S S}$.

$$
\therefore \mathrm{I}_{\mathrm{DSS}}=\frac{1}{2} \mathrm{~K}_{\mathrm{n}}^{\prime}\left(\frac{W}{L}\right) \mathrm{V}_{\mathrm{t}}^{2} .
$$

MOSFET as Amplifier :-

- For saturation $V_{D}>V_{G S}-V_{t}$
- To reduce non linear distortion $v_{\mathrm{gs}} \ll 2\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right)$
- $\mathrm{i}_{\mathrm{d}}=\mathrm{K}_{\mathrm{n}}^{\prime}\left(\frac{W}{L}\right)\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right) v_{\mathrm{gs}} \Rightarrow \quad \mathrm{g}_{\mathrm{m}}=\mathrm{K}_{\mathrm{n}}^{\prime}\left(\frac{W}{L}\right)\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right)$
- $\frac{v_{\mathrm{d}}}{v_{\mathrm{gs}}}=-\mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{D}}$
- Unity gain frequency $f_{T}=\frac{\mathrm{g}_{\mathrm{m}}}{2 \pi\left(\mathrm{C}_{\mathrm{gs}}+\mathrm{C}_{\mathrm{gd}}\right)}$

JFET :-

- $\mathrm{V}_{\mathrm{GS}} \leq \mathrm{V}_{\mathrm{p}} \Rightarrow \mathrm{i}_{\mathrm{D}}=0 \rightarrow$ Cut off
- $\mathrm{V}_{\mathrm{p}} \leq \mathrm{V}_{\mathrm{GS}} \leq 0, \mathrm{~V}_{\mathrm{DS}} \leq \mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{p}}$

$$
\left.\mathrm{i}_{\mathrm{D}}=\mathrm{I}_{\mathrm{DSS}}\left[2\left(1-\frac{V_{G S}}{V_{p}}\right)\left(\frac{v_{D S}}{-V_{p}}\right)-\left(\frac{v_{D S}}{v_{p}}\right)^{2}\right]\right\} \rightarrow \text { Triode }
$$

- $\mathrm{V}_{\mathrm{p}} \leq \mathrm{V}_{\mathrm{GS}} \leq 0, \quad \mathrm{~V}_{\mathrm{DS}} \geq \mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{p}}$

$$
\left.\begin{array}{c}
\mathrm{i}_{\mathrm{D}}=\mathrm{I}_{\mathrm{DSS}}\left(1-\frac{V_{G S}}{V_{p}}\right)^{2} \Rightarrow \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{p}}\left(1-\sqrt{\frac{\mathrm{I}_{D}}{\mathrm{I}_{\mathrm{DSS}}}}\right) \\
\mathrm{g}_{\mathrm{m}}=\frac{2 \mathrm{II}_{\mathrm{DSS}}}{\left|V_{\mathrm{p}}\right|}\left(1-\frac{V_{G S}}{V_{p}}\right)=\frac{2 \mathrm{I}_{\mathrm{DSS}}}{\left|V_{\mathrm{p}}\right|} \sqrt{\frac{I_{D}}{\mathrm{I}_{\mathrm{DSS}}}}
\end{array}\right\} \rightarrow \text { Saturation }
$$

Zener Regulators :-

- For satisfactory operation $\frac{V_{i}-V_{z}}{R_{s}} \geq I_{Z_{\text {min }}}+I_{L_{\text {max }}}$

[^3]- $\mathrm{R}_{\mathrm{S}_{\text {max }}}=\frac{\mathrm{V}_{\mathrm{s}_{\text {min }}}-\mathrm{V}_{\mathrm{z}_{0}}-\mathrm{I}_{\mathrm{z}_{\text {min }}} \mathrm{r}_{\mathrm{z}}}{\mathrm{I}_{\mathrm{z}_{\text {min }}}+\mathrm{I}_{\mathrm{L}_{\text {max }}}}$
- Load regulation $=-\left(r_{z} \| R_{s}\right)$
- \quad Line Regulation $=\frac{r_{z}}{R_{\mathrm{s}}+\mathrm{r}_{\mathrm{z}}}$.
- For finding min R_{L} take $\mathrm{V}_{\mathrm{s} \min } \& \mathrm{~V}_{\mathrm{zk}}, \mathrm{I}_{\mathrm{zk}}$ (knee values (min)) calculate according to that .

Operational Amplifier:- (VCVS)

- Fabricated with VLSI by using epitaxial method
- High i/p impedance, Low o/p impedance, High gain, Bandwidth, slew rate .
- FET is having high i / p impedance compared to op-amp .
- Gain Bandwidth product is constant .
- Closed loop voltage gain $A_{C L}=\frac{A_{O L}}{1 \pm \beta A_{O L}} \quad \beta \rightarrow$ feed back factor
- $\Rightarrow \mathrm{V}_{0}=\frac{-1}{\mathrm{RC}} \int \mathrm{V}_{\mathrm{i}} \mathrm{dt} \rightarrow$ LPF acts as integrator ;
- $\quad \Rightarrow V_{0}=\frac{-\mathrm{R}}{\mathrm{L}} \int V_{\mathrm{i}} \mathrm{dt} ; \quad \quad \mathrm{V}_{0}=\frac{-\mathrm{L}}{\mathrm{R}} \frac{\mathrm{dv}}{\mathrm{dt}}(\mathrm{HPF})$
- For Op-amp integrator $V_{0}=\frac{-1}{\tau} \int V_{i} d t$; Differentiator $V_{0}=-\tau \frac{d v_{i}}{d t}$
- Slew rate $\mathrm{SR}=\frac{\Delta \mathrm{V}_{0}}{\Delta \mathrm{t}}=\frac{\Delta \mathrm{V}_{0}}{\Delta \mathrm{t}} \cdot \frac{\Delta \mathrm{V}_{\mathrm{i}}}{\Delta \mathrm{t}}=\mathrm{A} \cdot \frac{\Delta \mathrm{V}_{\mathrm{i}}}{\Delta \mathrm{t}}$
- Max operating frequency $f_{\text {max }}=\frac{\text { slew rate }}{2 \pi \cdot \Delta V_{0}}=\frac{\text { slew rate }}{2 \pi \times \Delta V_{i} \times A}$.
- In voltage follower Voltage series feedback
- In non inverting mode voltage series feedback
- In inverting mode voltage shunt feed back
- $\quad \mathrm{V}_{0}=-\eta \mathrm{V}_{\mathrm{T}} \ln \left(\frac{V_{i}}{R \mathrm{I}_{0}}\right)$
- $V_{0}=-V_{B E}$

$$
=-\eta V_{T} \ln \left(\frac{V_{S}}{R I_{C 0}}\right)
$$

- Error in differential $\%$ error $=\frac{1}{\operatorname{CMRR}}\left(\frac{V_{c}}{V_{d}}\right) \times 100 \%$

Power Amplifiers :-

- Fundamental power delivered to load $P_{1}=\left(\frac{B_{1}}{\sqrt{2}}\right)^{2} R_{L}=\frac{B_{1}^{2}}{2} R_{L}$
- Total Harmonic power delivered to load $\mathrm{P}_{\mathrm{T}}=\left[\frac{B_{1}^{2}}{2}+\frac{B_{2}^{2}}{2}+\cdots ..\right] R_{L}$

$$
\begin{aligned}
& =\mathrm{P}_{1}\left[1+\left(\frac{B_{2}}{B_{1}}\right)^{2}+\left(\frac{B_{3}}{B_{1}}\right)^{2}+\ldots \ldots\right] \\
& =\left[1+\mathrm{D}^{2}\right] \mathrm{P}_{1}
\end{aligned}
$$

Where $\mathrm{D}=\sqrt{+\mathrm{D}_{2}^{2}+\cdots . .+\mathrm{D}_{\mathrm{n}}^{2}} \quad \mathrm{D}_{\mathrm{n}}=\frac{\mathrm{B}_{\mathrm{n}}}{\mathrm{B}_{1}}$
$\mathrm{D}=$ total harmonic Distortion .

Class A operation :-

- $\mathrm{o} / \mathrm{p} \mathrm{I}_{\mathrm{C}}$ flows for entire 360^{0}
- 'Q' point located @ centre of DC load line i.e., $\mathrm{V}_{\mathrm{ce}}=\mathrm{V}_{\mathrm{cc}} / 2 ; \eta=25 \%$
- Min Distortion , min noise interference, eliminates thermal run way
- Lowest power conversion efficiency \& introduce power drain
- $\mathrm{P}_{\mathrm{T}}=\mathrm{I}_{\mathrm{C}} \mathrm{V}_{\mathrm{CE}}-\mathrm{i}_{\mathrm{c}} \mathrm{V}_{\mathrm{ce}}$ if $\mathrm{i}_{\mathrm{c}}=0$, it will consume more power
- $\quad P_{T}$ is dissipated in single transistors only (single ended)

Class B:-

- I_{C} flows for 180°; 'Q' located @ cutoff ; $\eta=78.5 \%$; eliminates power drain
- Higher Distortion, more noise interference, introduce cross over distortion
- Double ended .i.e ., 2 transistors . $\mathrm{I}_{\mathrm{C}}=0$ [transistors are connected in that way] $\mathrm{P}_{\mathrm{T}}=\mathrm{i}_{\mathrm{c}} \mathrm{V}_{\text {ce }}$
- $\mathrm{P}_{\mathrm{T}}=\mathrm{i}_{\mathrm{c}} \mathrm{V}_{\text {ce }}=0.4 \mathrm{P}_{0} \quad \mathrm{P}_{\mathrm{T}} \rightarrow$ power dissipated by 2 transistors .

Class AB operation :-

- I_{C} flows for more than 180° \& less than 360°
- 'Q' located in active region but near to cutoff ; $\eta=60 \%$
- Distortion \& Noise interference less compared to class ' B ' but more in compared to class ' A '
- Eliminates cross over Distortion

Class ' C ' operation :-

- I_{C} flows for <180; 'Q' located just below cutoff ; $\eta=87.5 \%$
- Very rich ín Distortion ; noise interference is high .

Oscillators :-

- For RC-phase shift oscillator $f=\frac{1}{2 \pi R C \sqrt{6+4 K}}$

$$
\mathrm{h}_{\mathrm{fe}} \geq 4 \mathrm{k}+23+\frac{29}{\mathrm{k}} \quad \text { where } \mathrm{k}=\mathrm{R}_{\mathrm{c}} / \mathrm{R}
$$

$$
\mathrm{f}=\frac{1}{2 \pi \mathrm{RC} \sqrt{6}} \quad \mu>29
$$

- For op-amp RC oscillator $f=\frac{1}{2 \pi R C \sqrt{6}} \quad\left|A_{f}\right| \geq 29 \Rightarrow R_{f} \geq 29 R_{1}$

Wein Bridge Oscillator :-

$$
\begin{array}{ll}
\mathrm{f}=\frac{1}{2 \pi \sqrt{\mathrm{R}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{C}^{\prime} \mathrm{C}^{\prime \prime}}} & \mathrm{h}_{\mathrm{fe}} \geq 3 \\
& \mu \geq 3 \\
& \mathrm{~A} \geq 3 \Rightarrow \mathrm{R}_{\mathrm{f}} \geq 2 \mathrm{R}_{1}
\end{array}
$$

Hartley Oscillator :-

$$
\begin{array}{ll}
\mathrm{f}=\frac{1}{2 \pi \sqrt{\left(\mathrm{~L}_{1}+\mathrm{L}_{2}\right) \mathrm{C}}} & \left|\mathrm{~h}_{\mathrm{fe}}\right| \geq \frac{\mathrm{L}_{2}}{\mathrm{~L}_{1}} \\
& |\mu| \geq \frac{\mathrm{L}_{2}}{\mathrm{~L}_{1}} \\
& |\mathrm{~A}| \geq \frac{\mathrm{L}_{2}}{\mathrm{~L}_{1}} \\
\downarrow \\
& \frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{1}}
\end{array}
$$

Colpits Oscillator :-

$$
\mathrm{f}=\frac{1}{2 \pi \sqrt{\mathrm{~L} \frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}}} \quad\left|\mathrm{~h}_{\mathrm{fe}}\right| \geq \frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}
$$

MatheMatics

Matrix :-

- If $|\mathrm{A}|=0 \rightarrow$ Singular matrix; $|\mathrm{A}| \neq 0$ Non singular matrix
- Scalar Matrix is a Diagonal matrix with all diagonal elements are equal
- Unitary Matrix is a scalar matrix with Diagonal element as ' 1 ' $\left(A^{Q}=\left(A^{*}\right)^{T}=A^{-1}\right)$
- If the product of 2 matrices are zero matrix then at least one of the matrix has det zero
- Orthogonal Matrix if $A A^{T}=A^{T} \cdot A=I \Rightarrow A^{T}=A^{-1}$
- $\mathrm{A}=\mathrm{A}^{\mathrm{T}} \rightarrow$ Symmetric
$A=-A^{T} \rightarrow$ Skew symmetric

Properties :- (if A \& B are symmetrical)

- A + B symmetric
- KA is symmetric
- $\mathrm{AB}+\mathrm{BA}$ symmetric
- $A B$ is symmetric iff $A B=B A$
- For any ' A ' $\rightarrow \mathrm{A}+\mathrm{A}^{\mathrm{T}}$ symmetric ; $\mathrm{A}-\mathrm{A}^{\mathrm{T}}$ skew symmetric.
- Diagonal elements of skew symmetric matrix are zero
- If A skew symmetric $A^{2 n} \rightarrow$ symmetric matrix ; $A^{2 n-1} \rightarrow$ skew symmetric
- If ' A ' is null matrix then Rank of $A=0$.

Consistency of Equations :-

- $r(A, B) \neq r(A)$ is consistent
- $r(A, B)=r(A)$ consistent \&
if $r(A)=$ no. of unknowns then unique solution
$\mathrm{r}(\mathrm{A})<$ no. of unknowns then ∞ solutions .

Hermition, Skew Hermition , Unitary \& Orthogonal Matrices :-

29 No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram \& Jayanagar, Bangalore. Ph: o 99003 99699/ o 9741900225 / o80-32552008

Email : onlineies.com@gmail.com Site: www.onlineIES.com Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies

- $A^{T}=A^{*} \rightarrow$ then Hermition
- $\mathrm{A}^{\mathrm{T}}=-\mathrm{A}^{*} \rightarrow$ then Hermition
- Diagonal elements of Skew Hermition Matrix must be purely imaginary or zero
- Diagonal elements of Hermition matrix always real .
- A real Hermition matrix is a symmetric matrix.
- $|\mathrm{KA}|=\mathrm{K}^{\mathrm{n}}|\mathrm{A}|$

Eigen Values \& Vectors :-

- Char. Equation $|A-\lambda I|=0$.

Roots of characteristic equation are called eigen values. Each eigen value corresponds to non zero solution X such that $(A-\lambda I) X=0 . \quad X$ is called Eigen vector .

- Sum of Eigen values is sum of Diagonal elements (trace)
- Product of Eigen values equal to Determinent of Matrix .
- Eigen values of $A^{T} \& A$ are same
- λ is Eigen value of A then $1 / \lambda \rightarrow A^{-1} \& \frac{|A|}{\lambda}$ is Eigen value of adj A.
- $\lambda_{1}, \lambda_{2} \ldots \ldots . \lambda_{n}$ are Eigen values of A then

$$
K A \rightarrow K \lambda_{1}, K \lambda_{2} \ldots \ldots . . . K \lambda_{n}
$$

$A^{m} \rightarrow \lambda_{1}^{m}, \lambda_{2}^{m} \ldots ~ \lambda_{n}^{m}$.
$\mathrm{A}+\mathrm{KI} \rightarrow \lambda_{1}+\mathrm{k}, \lambda_{2}+\mathrm{k}, \ldots \ldots . . \lambda_{\mathrm{n}}+\mathrm{k}$
$(A-K I)^{2} \rightarrow\left(\lambda_{1}-k\right)^{2}, \ldots \ldots \ldots .\left(\lambda_{n}-k\right)^{2}$

- Eigen values of orthogonal matrix have absolute value of ' 1 '.
- Eigen values of symmetric matrix also purely real .
- Eigen values of skew symmetric matrix are purely imaginary or zero .
- $\lambda_{1}, \lambda_{2}, \ldots \ldots \lambda_{n}$ distinct eigen values of A then corresponding eigen vectors $X_{1}, X_{2}, \ldots \ldots X_{n}$ for linearly independent set .
- $\quad \operatorname{adj}(\operatorname{adj} \mathrm{A})=|\mathrm{A}|^{\mathrm{n}-2} \quad ; \quad|\operatorname{adj}(\operatorname{adj} \mathrm{A})|=|\mathrm{A}|^{(\mathrm{n}-1)^{2}}$

Complex Algebra :-

- Cauchy Rieman equations
$\left.\begin{array}{c}\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} ; \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \\ \frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \\ \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}\end{array}\right\}$ Neccessary \& Sufficient Conditions for $\mathrm{f}(\mathrm{z})$ to be analytic
- $\quad \int_{c} f(z) /(Z-a)^{n+1} d z=\frac{2 \pi i}{n!}\left[f^{n}(a)\right]$ if $f(z)$ is analytic in region ' C ' \& $Z=a$ is single point
- $f(z)=f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right) \frac{\left(z-z_{0}\right)}{1!}+f^{\prime \prime}\left(z_{0}\right) \frac{\left(z-z_{0}\right)^{2}}{2!}+\ldots \ldots+f^{n}\left(z_{0}\right) \frac{\left(z-z_{0}\right)^{n}}{n!}+\ldots \ldots \ldots$. Taylor Series \Downarrow
if $z_{0}=0$ then it is called Mclauren Series $f(z)=\sum_{0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$; when $a_{n}=\frac{f_{n}\left(z_{0}\right)}{n!}$
- If $f(z)$ analytic in closed curve ' C ' except @ finite no. of poles then

$$
\int_{c} f(z) d z=2 \pi i(\text { sum of Residues @ singular points within ‘C') }
$$

$$
\begin{aligned}
\operatorname{Res} \mathrm{f}(\mathrm{a}) & =\lim _{z \rightarrow a}(Z-a f(z) \\
& =\Phi(\mathrm{a}) / \varphi^{\prime}(\mathrm{a}) \\
& =\lim _{Z \rightarrow a} \frac{1}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}}\left((\mathrm{Z}-\mathrm{a})^{\mathrm{n}} \mathrm{f}(\mathrm{z})\right)
\end{aligned}
$$

Calculus :-

Rolle's theorem :-

If $f(x)$ is
(a) Continuous in [a, b]
(b) Differentiable in (a, b)
(c) $f(a)=f(b)$ then there exists at least one value $C \in(a, b)$ such that $f^{\prime}(c)=0$.

Langrange's Mean Value Theorem :-

If $f(x)$ is continuous in $[a, b]$ and differentiable in (a, b) then there exists atleast one value ' C ' in (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

Cauchy's Mean value theorem :-

If $\mathrm{f}(\mathrm{x}) \& \mathrm{~g}(\mathrm{x})$ are two function such that
(a) $f(x) \& g(x)$ continuous in $[a, b]$
(b) $\mathrm{f}(\mathrm{x}) \& \mathrm{~g}(\mathrm{x})$ differentiable in (a, b)
(c) $g^{\prime}(x) \neq 0 \quad \forall x$ in (a, b)

Then there exist atleast one value C in (a, b) such that
$\mathrm{f}^{\prime}(\mathrm{c}) / \mathrm{g}^{\prime}(\mathrm{c})=\frac{\mathrm{f}(\mathrm{b})-\mathrm{f}(\mathrm{a})}{\mathrm{g}(\mathrm{b})-\mathrm{g}(\mathrm{a})}$

Properties of Definite integrals :-

- $a<c<b \int_{a}^{b} f(x) \cdot d x=\int_{a}^{c} f(x) \cdot d x+\int_{c}^{b} f(x) \cdot d x$
- $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$
- $\int_{-a}^{a} f(x) \cdot d x=2 \int_{0}^{a} f(x) d x \quad f(x)$ is even

$$
=0 \quad \mathrm{f}(\mathrm{x}) \text { is odd }
$$

- $\int_{0}^{a} f(x) \cdot d x=2 \int_{0}^{a} f(x) d x$ if $f(x)=f(2 a-x)$
- $\quad=0 \quad$ if $f(x)=-f(2 a-x)$
- $\int_{0}^{n a} f(x) \cdot d x=n \int_{0}^{a} f(x) d x \quad$ if $f(x)=f(x+a)$
- $\int_{a}^{b} f(x) \cdot d x=\int_{a}^{b} f(a+b-x) . d x$
- $\int_{0}^{a} x f(x) \cdot d x=\frac{a}{2} \int_{0}^{a} f(x) \cdot d x$ if $f(a-x)=f(x)$
- $\int_{0}^{\pi / 2} \sin ^{n} \mathrm{X}=\int_{0}^{\pi / 2} \cos ^{\mathrm{n}} \mathrm{X}=\frac{(\mathrm{n}-1)(\mathrm{n}-3)(\mathrm{n}-5) \ldots \ldots . .2}{\mathrm{n}(\mathrm{n}-2)(\mathrm{n}-4) \ldots \ldots \ldots .3}$ if ' n ' odd

$$
=\frac{(n-1)(n-3) \ldots \ldots .1}{\mathrm{n}(\mathrm{n}-2)(\mathrm{n}-4) \ldots \ldots \ldots . . .} \cdot\left(\frac{\pi}{2}\right) \text { if ' } n \text { ' even }
$$

- $\int_{0}^{\pi / 2} \sin ^{m} x \cdot \cos ^{n} x \cdot d x=\frac{\{(m-1)(m-3) \ldots(m-5) \ldots \ldots .(2 \text { or } 1)\}\{(n-1)(n-3) \ldots \ldots . .(2 \text { or } 1)\} \cdot K}{(m+n)(m+n-2)(m+n-4) \ldots \ldots \ldots 2 \text { or } 1}$

Where $\mathrm{K}=\pi / 2$ when both $\mathrm{m} \& \mathrm{n}$ are even otherwise $\mathrm{k}=1$

Maxima \& Minima

A function $f(x)$ has maximum @ $x=a$ if $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)<0$
A function $f(x)$ has minimum @ $x=a$ if $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)>0$
Constrained Maximum or Minimum :-
To find maximum or minimum of $u=f(x, y, z)$ where x, y, z are connected by $\Phi(x, y, z)=0$

Working Rule :-

(i) Write $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})+\lambda \phi(\mathrm{x}, \mathrm{y}, \mathrm{z})$
(ii) Obtain $\mathrm{F}_{\mathrm{x}}=0, \mathrm{~F}_{\mathrm{y}}=0, \mathrm{~F}_{\mathrm{z}}=0$
(ii) Solve above equations along with $\phi=0$ to get stationary point .

Laplace Transform :-

- $\mathrm{L}\left\{\frac{d^{n}}{d t^{n}} f(s)\right\}=s^{\mathrm{n}} \mathrm{f}(\mathrm{s})-\mathrm{s}^{\mathrm{n}-1} \mathrm{f}(0)-\mathrm{s}^{\mathrm{n}-2} \mathrm{f}^{\prime}(0) \ldots \ldots . \mathrm{f}^{\mathrm{n}-1}(0)$
- $L\left\{t^{n} f(t)\right\}=(-1)^{n} \frac{d^{n}}{d s^{n}} f(s)$
- $\frac{f(t)}{t} \Leftrightarrow \int_{s}^{\infty} f(s) d s$
- $\int_{0}^{\mathrm{t}} \mathrm{f}(\mathrm{u}) \mathrm{du} \Leftrightarrow \mathrm{f}(\mathrm{s}) / \mathrm{s}$.

Inverse Transforms :-

- $\frac{s}{\left(s^{2}+a^{2}\right)^{2}}=\frac{1}{2 a} t \sin a t$
- $\frac{s^{2}}{\left(s^{2}+a^{2}\right)^{2}}=\frac{1}{2 a}[\sin a t+a t \cos a t]$
- $\frac{1}{\left(s^{2}+a^{2}\right)^{2}}=\frac{1}{2 a^{3}}[\sin$ at - at $\cos a t]$
- $\frac{\mathrm{s}}{\mathrm{s}^{2}-\mathrm{a}^{2}}=\operatorname{Cos}$ hat
- $\frac{a}{s^{2}-a^{2}}=$ Sin hat

Laplace Transform of periodic function : $L\{f(t)\}=\frac{\int_{0}^{T} e^{-s t} f(t) d t}{1-e^{-s T}}$
Numerical Methods
Bisection Method :
(1) Take two values of $x_{1} \& x_{2}$ such that $f\left(x_{1}\right)$ is + ve \& $f\left(x_{2}\right)$ is $-v e$ then $x_{3}=\frac{x_{1}+x_{2}}{2}$ find $f\left(x_{3}\right)$ if $f\left(x_{3}\right)$ + ve then root lies between $x_{3} \& x_{2}$ otherwise it lies between $x_{1} \& x_{3}$.

Regular falsi method :-
Same as bisection except $x_{2}=x_{0}-\frac{x_{1}-x_{0}}{f\left(x_{1}\right)-f\left(x_{0}\right)} f\left(x_{0}\right)$

Newton Raphson Method :-

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Pi cards Method :-

$$
y_{n+1}=y_{0}+\int_{x_{0}}^{x} f\left(x, y_{n}\right) \quad \leftarrow \frac{d y}{d x}=f(x, y)
$$

Taylor Series method :-
$\frac{d y}{d x}=f(x, y) \quad y=y_{0}+\left(x-x_{0}\right)\left(y^{\prime}\right)_{0}+\frac{\left(x-x_{0}\right)^{2}}{2!}(y)_{0}^{\prime \prime}+\ldots \ldots \ldots \ldots \frac{\left(x-x_{0}\right)^{n}}{n!}(y)_{0}^{n}$

Euler's method :-

$$
\mathrm{y}_{1}=\mathrm{y}_{0}+\mathrm{hf}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) \quad \leftarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{f}(\mathrm{x}, \mathrm{y}
$$

$$
\mathrm{y}_{1}^{(1)}=\mathrm{y}_{0}+\frac{\mathrm{h}}{2}\left[\mathrm{f}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)+\mathrm{f}\left(\mathrm{x}_{0}+\mathrm{h}, \mathrm{y}_{1}\right)\right.
$$

$$
\mathrm{y}_{1}^{(2)}=\mathrm{y}_{0}+\frac{\mathrm{h}}{2}\left[\mathrm{f}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)+\mathrm{f}\left(\mathrm{x}_{0+\mathrm{h}}, \mathrm{y}_{1}^{(1)}\right)\right]
$$

$$
:
$$

Calculate till two consecutive value of ' y ' agree

$$
\begin{aligned}
& y_{2}=y_{1}+h f\left(x_{0}+h, y_{1}\right) \\
& y_{2}^{(1)}=y_{0}+\frac{h}{2}\left[f\left(x_{0}+h, y_{1}\right)+f\left(x_{0}+2 h, y_{2}\right)\right.
\end{aligned}
$$

Runge Kutta Method :-

$k_{1}=h f\left(x_{0}, y_{0}\right)$
$k_{2}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}\right)$$\quad$ finally compute $K=\frac{1}{6}\left(K_{1}+2 K_{2}+2 K_{3}+K_{4}\right)$

Email : onlineies.com@gmail.com Site: www.onlineIES.com
Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies

$$
\begin{array}{ll}
\mathrm{k}_{3}=\mathrm{hf}\left(\mathrm{x}_{0}+\frac{\mathrm{h}}{2}, \mathrm{y}_{0}+\frac{\mathrm{k}_{2}}{2}\right) \quad \therefore \text { approximation vale } \mathrm{y}_{1}=\mathrm{y}_{0}+\mathrm{K} . \\
\mathrm{k}_{3}=\mathrm{hf}\left(\mathrm{x}_{0}+\mathrm{h}, \mathrm{y}_{0}+\mathrm{k}_{3}\right)
\end{array}
$$

Trapezoidal Rule :-

$\int_{x_{0}}^{x_{0}+n h} f(x) \cdot d x=\frac{h}{2}\left[\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+\ldots \ldots . y_{n-1}\right)\right]$
$f(x)$ takes values $y_{0}, y_{1} \ldots .$.

$$
@ x_{0}, x_{1}, x_{2} \ldots \ldots .
$$

Simpson's one third rule :-

$$
\int_{x_{0}}^{x_{0}+n h} f(x) \cdot d x=\frac{h}{3}\left[\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+\ldots \ldots y_{n-1}\right)+2\left(y_{2}+y_{4}+\cdots \ldots+y_{n-2}\right)\right]
$$

Simpson three eighth rule :-
$\int_{x_{0}}^{x_{0}+n h} f(x) \cdot d x=\frac{3 h}{8}\left[\left(y_{0}+y_{n}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}+\ldots \ldots y_{n-1}\right)+2\left(y_{3}+y_{6}+\ldots \ldots+y_{n-3}\right)\right]$

Differential Equations :-

Variable \& Seperable :-
General form is $\quad f(y) d y=\phi(x) d x$
Sol: $\int f(y) d y=\int \phi(x) d x+C$.

Homo generous equations

General form $\frac{d y}{d x}=\frac{f(x, y)}{\phi(x, y)} \quad f(x, y) \& \phi(x, y)$ Homogenous of same degree
Sol : Put $y=V x \Rightarrow \frac{d y}{d x}=V+x \frac{d v}{d x} \&$ solve
Reducible to Homogeneous :-
General form $\frac{d y}{d x}=\frac{a x+b y+c}{a^{\prime} x+b^{\prime} y+c^{\prime}}$
(i) $\frac{a}{a^{\prime}} \neq \frac{b}{b^{\prime}}$

Sol : Put $\quad x=X+h \quad y=Y+k$

[^4]$\Rightarrow \frac{d y}{d x}=\frac{a x+b y+(a h+b k+c)}{a^{\prime} x+b^{\prime} y+\left(a^{\prime} h+b^{\prime} k+c^{\prime}\right)} \quad$ Choose h, k such that $\frac{d y}{d x}$ becomes homogenous then solve by $\mathrm{Y}=\mathrm{VX}$
(ii) $\frac{a}{a^{\prime}}=\frac{b}{b^{\prime}}$

Sol : Let $\frac{a}{a^{\prime}}=\frac{b}{b^{\prime}}=\frac{1}{m}$

$$
\frac{d y}{d x}=\frac{a x+b y+c}{m(a x+b y)+c}
$$

Put $\mathrm{ax}+\mathrm{by}=\mathrm{t} \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\left(\frac{d t}{d x}-a\right) / \mathrm{b}$
Then by variable \& seperable solve the equation .

Libnetz Linear equation :-

General form $\frac{d y}{d x}+p y=Q \quad$ where $P \& Q$ are functions of " x "

$$
\text { I.F }=e^{\int p . d x}
$$

Sol : $y(\mathrm{I} . \mathrm{F})=\int \mathrm{Q} .(\mathrm{I} . \mathrm{F}) \mathrm{dx}+\mathrm{C}$.

Exact Differential Equations :-

General form $M d x+N d y=0 \quad M \rightarrow f(x, y)$

$$
\mathrm{N} \rightarrow \mathrm{f}(\mathrm{x}, \mathrm{y})
$$

If $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$ then

Sol : \int M.dx $+\int($ terms of N containing $x) d y=C$
(y constant)

Rules for finding Particular Integral :-

$$
\begin{aligned}
\frac{1}{f(D)} e^{a x} & =\frac{1}{f(a)} e^{a x} \\
& =x \frac{1}{f^{\prime}(a)} e^{a x} \quad \text { if } f(a)=0 \\
& =x^{2} \frac{1}{f^{\prime \prime}(a)} e^{a x} \quad \text { if } \quad f^{\prime}(a)=0
\end{aligned}
$$

Email : onlineies.com@gmail.com Site: www.onlineIES.com
Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies

$$
\begin{array}{rlr}
\frac{1}{f\left(b^{2}\right)} \sin (a x+b) & =\frac{1}{f\left(-a^{2}\right)} \sin (a x+b) & f\left(-a^{2}\right) \neq 0 \\
& =x \frac{1}{f^{\prime}\left(-a^{2}\right)} \sin (a x+b) & f\left(-a^{2}\right)=0 \\
& =x^{2} \frac{1}{f^{\prime \prime}\left(-a^{2}\right)} \sin (a x+b) & \\
\frac{1}{f(D)} x^{m}=[f(D)]^{y} x^{m} \\
\frac{1}{f(D)} e^{a x} f(x)=e^{a x} \frac{1}{f(D+a)} f(x)
\end{array} \text { Same applicable for cos (ax+b)}
$$

Vector Calculus :-

Green's Theorem :-

$$
\int_{C}(\phi d x+\varphi d y)=\iint\left(\frac{\partial \Psi}{\partial x}-\frac{\partial \phi}{\partial y}\right) d x d y
$$

This theorem converts a line integral around a closed curve into Double integral which is special case of Stokes theorem .

Series expansion :-

Taylor Series :-
$f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots \ldots \ldots \ldots+\frac{f^{n}(a)}{n!}(x-a)^{n}$
$f(x)=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\ldots \ldots \ldots . .+\frac{f^{n}(0)}{n!} x^{n}+\ldots \ldots . .(m c$ lower series $)$
$\left.(1+x)^{n}=1+n x+\frac{n(n-1)}{2} x^{2}+\ldots\right)|n x|<1$
$\mathrm{e}^{\mathrm{x}}=1+\mathrm{x}+\frac{\mathrm{x}^{2}}{2!}+$
$\operatorname{Sin} x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}$
$\operatorname{Cos} x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots \ldots \ldots$

Digital Electronics

- Fan out of a logic gate $=\frac{\mathrm{I}_{\mathrm{OH}}}{\mathrm{I}_{\mathrm{IH}}}$ or $\frac{\mathrm{I}_{\mathrm{OL}}}{\mathrm{I}_{\mathrm{IL}}}$
- Noise margin : $\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{OL}}-\mathrm{V}_{\mathrm{IL}}$
- Power Dissipation $\mathrm{P}_{\mathrm{D}}=\mathrm{V}_{\mathrm{cc}} \mathrm{I}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}\left[\frac{\mathrm{I}_{C C L}+\mathrm{I}_{C C H}}{2}\right] \quad \mathrm{I}_{C C L} \rightarrow \mathrm{I}_{\mathrm{c}}$ when o/p low

$$
\mathrm{I}_{C C H} \rightarrow \mathrm{I}_{\mathrm{c}} \text { when o/p high . }
$$

- TTL, ECL \& CMOS are used for MSI or SSI
- Logic swing : $\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}$
- RTL, DTL , TTL \rightarrow saturated logic \quad ECL \rightarrow Un saturated logic
- Advantages of Active pullup ; increased speed of operation , less power consumption .
- For TTL floating i / p considered as logic " 1 " \& for ECL it is logic " 0 ".
- "MOS" mainly used for LSI \& VLSI . fan out is too high
- ECL is fastest gate \& consumes more power .
- CMOS is slowest gate \& less power consumption
- NMOS is faster than CMOS .
- Gates with open collector o/p can be used for wired AND operation (TTL)
- Gates with open emitter o/p can be used for wired OR operation (ECL)
- ROM is nothing but combination of encoder \& decoder. This is non volatile memory.
- SRAM : stores binary information interms of voltage uses FF.
- DRAM : infor stored in terms of charge on capacitor . Used Transistors \& Capacitors .
- SRAM consumes more power \& faster than DRAM .
- CCD , RAM are volatile memories .
- 1024×8 memory can be obtained by using 1024×2 memories
- No. of memory ICs of capacity $1 \mathrm{k} \times 4$ required to construct memory of capacity $8 \mathrm{k} \times 8$ are " 16 "

DAC

- $\mathrm{FSV}=\mathrm{V}_{\mathrm{R}}\left(1-\frac{1}{2^{n}}\right)$
- Resolution $\left.=\frac{\text { step size }}{\mathrm{FSV}}=\frac{\mathrm{V}_{\mathrm{R}} / 2^{\mathrm{n}}}{\mathrm{V}_{\mathrm{R}}\left(1-\frac{1}{2^{\mathrm{n}}}\right)}=\frac{1}{2^{\mathrm{n}-1}} \times 100 \%\right) *$ Resolution $=\frac{\mathrm{FSV}}{2^{\mathrm{n}}-1}$
- Accuracy $= \pm \frac{1}{2} \operatorname{LSB}= \pm \frac{1}{2^{n+1}} \quad *$ Quantisation error $=\frac{\mathrm{V}_{\mathrm{R}}}{2^{\mathrm{n}}} \%$
- Analog $\mathrm{o} / \mathrm{p}=\mathrm{K}$. digital o / p

PROM, PLA \& PAL :-

AND	OR	
Fixed	Programmable	PROM
Programmable fixed		PAL
Programmable Programmable	PLA	

- Flash Type ADC : $2^{\mathrm{n}-1} \rightarrow$ comparators
$2^{\mathrm{n}} \rightarrow$ resistors
$2^{n} \times n \rightarrow$ Encoder

Fastest ADC :-

- Successive approximation ADC : n clk pulses
- Counter type ADC : $2^{\mathrm{n}}-1 \mathrm{clk}$ pulses
- Dual slope integrating type : $2^{\mathrm{n}+1}$ clock pulses .

Flip Flops :-

- $\mathrm{a}(\mathrm{n}+1)=\mathrm{S}+\mathrm{R}^{\prime} \mathrm{Q}$

$$
\begin{aligned}
& =\mathrm{D} \\
& =\mathrm{JQ}^{\prime}+\mathrm{K}^{\prime} \mathrm{Q} \\
& =\mathrm{TQ}^{\prime}+\mathrm{T}^{\prime} \mathrm{Q}
\end{aligned}
$$

Excitation tables :-

		S	R
0	0	0	x
0	1	1	0
1	0	0	1
1	1	x	0

		J	K
0	0	0	x
0	1	1	x
1	0	x	1
1	1	X	0

		D
0	0	0
0	1	1
1	0	0
1	1	1

		T
0	0	0
0	1	1
1	0	1
1	1	0

- For ring counter total no. of states $=\mathrm{n}$
- For twisted Ring counter $=$ " $2 \mathrm{n} "$ (Johnson counter $/$ switch tail Ring counter) .
- To eliminate race around condition $\mathrm{t}_{\mathrm{pd} \text { clock }} \ll \mathrm{t}_{\mathrm{pd} \mathrm{FF}}$.
- In Master slave master is level triggered \& slave is edge triggered

Combinational Circuits :-

Multiplexer :-

A B

$$
\sum(2,5,6,7)
$$

- $\quad 2^{\mathrm{n}} \mathrm{i} / \mathrm{ps}$; $1 \mathrm{o} / \mathrm{p}$ \& ' n ' select lines.
- It can be used to implement Boolean function by selecting select lines as Boolean variables
- For implementing ' n ' variable Boolean function $2^{n} \times 1$ MUX is enough .
- For implementing " $n+1$ " variable Boolean $2^{n} \times 1$ MUX + NOT gate is required.
- For implementing " $n+2$ " variable Boolean function $2^{n} \times 1$ MUX + Combinational Ckt is required
- If you want to design $2^{m} \times 1$ MUX using $2^{n} \times 1$ MUX. You need $2^{m-n} 2^{n} \times 1$ MUXes

No. 1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram \& Jayanagar, Bangalore. Ph: o 99003 99699/ o 9741900225 / 080-32552008

Email : onlineies.com@gmail.com Site: www.onlineIES.com Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies

Decoder :-

- $n i / p \& 2^{n} o / p \prime s$
- used to implement the Boolean function. It will generate required min terms @ $\mathrm{o} / \mathrm{p} \&$ those terms should be "OR" ed to get the result .
- Suppose it consists of more min terms then connect the max terms to NOR gate then it will give the same o/p with less no. of gates.
- If you want to Design $m \times 2^{m}$ Decoder using $n \times 2^{n}$ Decoder. Then no. of $n \times 2^{n}$ Decoder required $=\frac{2^{\mathrm{m}}}{2^{\mathrm{n}}}$.
- In Parallel ("n" bit) total time delay $=2_{n} t_{p d}$.
- For carry look ahead adder delay $=2 t_{p d}$.

Microprocessors

Email : onlineies.com@gmail.com Site: www.onlineIES.com Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies

- Clock frequency $=\frac{1}{2}$ crystal frequency
- Hardware interrupts

- Software interrupts RST 00000 H $\left.\begin{array}{cc}\text { RST } 1 & 0008 \mathrm{H} \\ 2 & 0010 \mathrm{H} \\ \vdots & 0018 \mathrm{H} \\ & 7 \\ & 0038 \mathrm{H}\end{array}\right\} \quad$ Vectored
-

S_{1}	S_{0}	
0	0	Halt
0	1	write
1	0	Read
1	1	fetch

- HOLD \& HLDA used for Direct Memory Access . Which has highest priority over all interrupts .

Flag Registers :-

- Sign flag :- After arthematic operation MSB is resolved for sign flag. $S=1 \rightarrow$-ve result
- If $\mathrm{Z}=1 \Rightarrow$ Result $=0$
- AC: Carry from one stage to other stage is there then $\mathrm{AC}=1$
- $P: P=1 \Rightarrow$ even no. of one's in result.
- CY: if arthematic operation Results in carry then $\mathrm{CY}=1$
- For INX \& DCX no flags effected
- In memory mapped I/O ; I/O Devices are treated as memory locations. You can connect max of 65536 devices in this technique .
- In I/O mapped I/O , I/O devices are identified by separate 8 -bit address . same address can be used to identify $\mathrm{i} / \mathrm{p} \& \mathrm{o} / \mathrm{p}$ device .
- Max of $256 \mathrm{i} / \mathrm{p} \& 256 \mathrm{o} / \mathrm{p}$ devices can be connected.

Programmable Interfacing Devices :-

- $8155 \rightarrow$ programmable peripheral Interface with 256 bytes RAM \& 16-bit counter
- $8255 \rightarrow$ Programmable Interface adaptor
- $8253 \rightarrow$ Programmable Interval timer
- $8251 \rightarrow$ programmable Communication interfacing Device (USART)
- $8257 \rightarrow$ Programmable DMA controller (4 channel)
- $8259 \rightarrow$ Programmable Interrupt controller
- $8272 \rightarrow$ Programmable floppy Disk controller
- CRT controller
- Key board \& Display interfacing Device

RLC :- Each bit shifted to adjacent left position . D_{7} becomes D_{0}.
CY flag modified according to D_{7}
RAL :- Each bit shifted to adjacent left position. D_{7} becomes CY \& CY becomes D_{0}.
ROC :-CY flag modified according D_{0}
RAR :- D_{0} becomes CY \& CY becomes D_{7}
CALL \& RET Vs PUSH \& POP :-

CALL \& RET

- When CALL executes, $\mu \mathrm{p}$ automatically stores 16 bit address of instruction next to CALL on the Stack
- CALL executed, SP decremented by 2
- RET transfers contents of top 2 of SP to PC
- RET executes "SP" incremented by 2

PUSH \& POP

* Programmer use PUSH to save the contents rp on stack
* PUSH executes "SP" decremented by " 2 ".
* same here but to specific "rp" .
* same here

Some Instruction Set information :-
CALL Instruction
CALL $\rightarrow 18 \mathrm{~T}$ states SRRWW
CC $\quad \rightarrow$ Call on carry $\quad 9-18$ states
$\mathrm{CM} \quad \rightarrow$ Call on minus $\quad 9-18$
CNC \rightarrow Call on no carry
$\mathrm{CZ} \quad \rightarrow$ Call on Zero; CNZ call on non zero
No. 1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram \& Jayanagar, Bangalore. Ph: o 99003 99699/ o 9741900225 / 080-32552008

Email : onlineies.com@gmail.com Site: www.onlineIES.com Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies

CP $\quad \rightarrow$ Call on + ve
CPE \rightarrow Call on even parity
$\mathrm{CPO} \rightarrow$ Call on odd parity
RET :- 10 T
RC :-6/ 12 ' T ’ states

Jump Instructions :-

JMP $\rightarrow 10 \mathrm{~T}$
JC \rightarrow Jump on Carry $\quad 7 / 10$ T states
JNC \rightarrow Jump on no carry
JZ \rightarrow Jump on zero
JNZ \rightarrow Jump on non zero
JP \rightarrow Jump on Positive
JM \rightarrow Jump on Minus
JPE \rightarrow Jump on even parity
JPO \rightarrow Jump on odd parity .

- PCHL : Move HL to PC

6T

- PUSH: 12 T ; POP : 10 T
- SHLD : address : store HL directly to address 16 T
- SPHL: Move HL to SP 6T
- STAX : R_{p} store A in memory 7 T
- STC : set carry 4 T
- XCHG : exchange DE with HL "4T"

XTHL :- Exchange stack with HL 16 T

- For "AND " operation "AY" flag will be set \& "CY" Reset
- For "CMP" if $\mathrm{A}<\mathrm{Reg} / \mathrm{mem}: \mathrm{CY} \rightarrow 1 \& \mathrm{Z} \rightarrow 0$ (Nothing but A-B)

$$
\begin{aligned}
& \mathrm{A}>\mathrm{Reg} / \mathrm{mem}: \mathrm{CY} \rightarrow 0 \& \mathrm{Z} \rightarrow 0 \\
& \mathrm{~A}=\mathrm{Reg} / \mathrm{mem}: \mathrm{Z} \rightarrow 1 \& \mathrm{CY} \rightarrow 0 .
\end{aligned}
$$

- "DAD" Add HL + RP (10T) \rightarrow fetching, busidle, busidle
- DCX , INX won't effect any flags . (6T)

Email : onlineies.com@gmail.com Site: www.onlineIES.com
Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies

- DCR, INR effects all flags except carry flag . "Cy" wont be modified
- "LHLD" load "HL" pair directly
- " RST" \rightarrow 12T states
- SPHL , RZ, RNZ, PUSH, PCHL, INX , DCX, CALL \rightarrow fetching has 6T states
- PUSH-12 T ; POP - 10T

Email : onlineies.com@gmail.com Site: www.onlineIES.com Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies

[^0]: 13 No. 1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram \& Jayanagar, Bangalore. Ph: o 99003 99699/ o 9741900225 / o80-32552008

 Email : onlineies.com@gmail.com Site: www.onlineIES.com
 Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies

[^1]: 14 No. 1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram \& Jayanagar, Bangalore. Ph: o 99003 99699/ o 9741900225 / 080-32552008

 Email : onlineies.com@gmail.com Site: www.onlineIES.com Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies

[^2]: 24 No. 1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram \& Jayanagar, Bangalore. Ph: o 99003 99699/ o 9741900225 / 080-32552008

 Email : onlineies.com@gmail.com Site: www.onlineIES.com
 Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies

[^3]: 25 No. 1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram \& Jayanagar, Bangalore. Ph: o 99003 99699/ o 9741900225 / 080-32552008

 Email : onlineies.com@gmail.com Site: www.onlineIES.com
 Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies

[^4]: 35 No. 1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram \&
 Jayanagar, Bangalore. Ph: o 99003 99699/ o 9741900225 / 080-32552008
 Email : onlineies.com@gmail.com Site: www.onlineIES.com
 Google+: http://bit.ly/gplus iesgate FB: www.facebook.com/onlineies

